
Computer computations
(a short introduction to Mathematica computer
algebra system)

The goal of the course is not to teach the language of Mathematica but to give a rough overview of
numerous opportunities provided by it. The actual syntax of one or another command can be found
in the Help (addressed at any place of the code by the F1 button)

Lecture 1

Simplest operations, variables, and functions
Type  a  command.  To  evaluate  it  press +  simultaneously.  The  result  will  show  up  in  the
output cell.

In[1]:= 22
Out[1]= 4

In[2]:= Sin 4 
Out[2]=

1
2

To type the exponent  I  pressed ^. To get  the letter   I  typed p.  In general,  to type special
symbols and forms one can use Palettes called from the Mathematica menu. The required form can
be  chosen  with  a  mouse.  The  pop-up  menu  provides  a  hint  how  to  type  the  same  form  with  the
keyboard without using menu.

In[3]:=  x
Sinx  1

Out[3]=
2 Sin x2

Cos x2  Sin x2
In[4]:= 

n1

 1
n2

Out[4]=
2

6
Integers used by Mathematica can be arbitrary large, overflow never occurs. Also there is no restric-
tion on the specified precision of numerical computations



In[5]:= 200
N, 300

Out[5]= 788 657 867 364 790 503 552 363 213 932 185 062 295 135 977 687 173 263 294 742 533 244 359 
449 963 403 342 920 304 284 011 984 623 904 177 212 138 919 638 830 257 642 790 242 637 105 
061 926 624 952 829 931 113 462 857 270 763 317 237 396 988 943 922 445 621 451 664 240 254 
033 291 864 131 227 428 294 853 277 524 242 407 573 903 240 321 257 405 579 568 660 226 031 
904 170 324 062 351 700 858 796 178 922 222 789 623 703 897 374 720 000 000 000 000 000 000 
000 000 000 000 000 000 000 000 000 000

Out[6]= 2.7182818284590452353602874713526624977572470936999595749669676277240766303535 
4759457138217852516642742746639193200305992181741359662904357290033429526059 
5630738132328627943490763233829880753195251019011573834187930702154089149934 
88416750924476146066808226480016847741185374234544243710753907774499207

Commands,  once  input,  can  be  edited  and  evaluated  again.  A  cell  can  contain  a  sequence  of
commands.  If  a  command  ends with  “;”,  then the  result  is  not  printed to the output.  If  a  command
ends with a new line, then the result is printed.

In[7]:= b  a  32;
b  5
a  2;
b  5

Out[8]= 5  3  a2
Out[10]= 30

The result of the last executed command can be referred to as “%”:

In[11]:= 2

Out[11]= 900

(Pay  attention  to  the  fact  that  the  symbol  “%”  refers  to  the  result  of  the  last executed  command
rather
than to the command printed immediately before the one to be executed).
In addition to the usual assignments “”, there are also so called delayed ones “:”. Compare:

In[12]:= a  1;
b  a  1;
b
a  20;
b

Out[14]= 2

Out[16]= 2

In[17]:= a  1;
b : a  1;
b
a  20;
b

Out[19]= 2

Out[21]= 21

Delayed assignments are worth to be used to define functions (with arguments). The arguments are
put in the square brackets and separated by commas (and the parentheses are only used to group
compound expressions).
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Delayed assignments are worth to be used to define functions (with arguments). The arguments are
put in the square brackets and separated by commas (and the parentheses are only used to group
compound expressions).

In[22]:= fx_, y_ : x  y2;
fz2, 1

Out[23]= 1  z22
The  underscore  symbols  mean  that  x  and  y  can  stand  for  arbitrrary  expressions.  Without  those
signs the definition would be applied to the symbols x and y themselves only.

In[24]:= gx : x  12;
g6
gx

Out[25]= g6
Out[26]= 1  x2

It is possible to supply patterns of the form “x_”  with various conditions following the “/;” symbol. If
these conditions are not satisfied, then the expression remains unevaluated.

In[27]:= Clearf;
fn_Integer ; n  0 : n fn  1;
fn_Integer ; n  0 : ;
f0  1;
1
f5
1

f5
1
fc

Out[31]=
1
120

Out[32]= 0

Out[33]=
1
fc
Here the “Clear” command is used to erase all the previous definitions related to the symbol “f”.
Active assignments can be shown using the “?” symbol:

In[34]:= ? f

Global`f

f0  1
fn_Integer ; n  0 : n fn  1
fn_Integer ; n  0 : 
Mathematica  (М.)  examines  the  expression  to  be  evaluated  and  searches  for  its  parts  for  which
there  are  defined  assignments,  and  then  applies  them.  The  order  in  which  these  definitions  are
applied is chosen so that more specific ones are applied prior to more general ones. Thus, observ-
ing “f[-5]” M. checks first  if  the argument  “-5” is “0”. Since this is not the case, the first  definition  is
not applicable. Then it checks if it is a positive integer. Since it is not, the second definition neither is
applicable. Finally, the third definition is applicable and we get the result 1


 0.
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Mathematica  (М.)  examines  the  expression  to  be  evaluated  and  searches  for  its  parts  for  which
there  are  defined  assignments,  and  then  applies  them.  The  order  in  which  these  definitions  are
applied is chosen so that more specific ones are applied prior to more general ones. Thus, observ-
ing “f[-5]” M. checks first  if  the argument  “-5” is “0”. Since this is not the case, the first  definition  is
not applicable. Then it checks if it is a positive integer. Since it is not, the second definition neither is
applicable. Finally, the third definition is applicable and we get the result 1


 0.

When calling a function with arguments, along with the usual notation, one can also use prefix and
postfix notation indicated by the symbols “@” and “//”, respectively

In[35]:= f5
f5
5  f

Out[35]= 120

Out[36]= 120

Out[37]= 120

Together with named functions there are also so called pure functions (with no name associated to
them). A pure function is denoted by the symbol “&” at the end and its argument is denoted by “#”.
Compare:

In[38]:= gx_ : x  12;
gq  12 &q

Out[39]= 1  q2
Out[40]= 1  q2

Pure  functions  in  combination  with  postfix  notation  are  convinient  for  final  formatting  of  the  com-
puted expressions

In[41]:= b  c3  7  x2;
b2  Expand
b2  Collect, x &

Out[42]= 2401  1372 c3  294 c6  28 c9  c12  1372 x  588 c3 x 
84 c6 x  4 c9 x  294 x2  84 c3 x2  6 c6 x2  28 x3  4 c3 x3  x4

Out[43]= 2401  1372 c3  294 c6  28 c9  c12 1372  588 c3  84 c6  4 c9 x  294  84 c3  6 c6 x2  28  4 c3 x3  x4
Lists and other expressions
Arrays, vectors, matricies, and tables are realized in Mathematica as lists and nested lists. A list is a
sequence  of  its  components  separated  by  commas  and  enclosed  into  figure  brackets  “{“,”}”.  A
matrix can be input as a table but it is still interpreted internally as a nested list.

In[44]:= 1, 3, a, x  5
1 z u  1
0 1 0
d2 0 1

Out[44]= 1, 3, 20, 5  x
Out[45]= 1, z, 1  u, 0, 1, 0, d2, 0, 1

A list is a simplest example of what is considered as an expression. In fact everything in Mathe-
matica  is  an  expression.  An  expression  consists  of  a  head  and  a  sequence  of  its  elemets.  Each
element,  in turn, can be either an atom (a number,  a variable  etc.) or again an expression  with its
own head, a list of its elemends, and so on. As a result we get a tree-like expression. For example,
the operations “+“, “”, or taking a power have the heads “Plus”, “Times”, and “Power”, respectively,
and a list has the head “List”.
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A list is a simplest example of what is considered as an expression. In fact everything in Mathe-
matica  is  an  expression.  An  expression  consists  of  a  head  and  a  sequence  of  its  elemets.  Each
element,  in turn, can be either an atom (a number,  a variable  etc.) or again an expression  with its
own head, a list of its elemends, and so on. As a result we get a tree-like expression. For example,
the operations “+“, “”, or taking a power have the heads “Plus”, “Times”, and “Power”, respectively,
and a list has the head “List”.

In[46]:= Plusc, 4
Timesc, 4
Powerc, 4
Listc, 4

Out[46]= 4  c

Out[47]= 4 c

Out[48]= c4

Out[49]= c, 4
The actual structure of an expression can be viewed using “FullForm” or “TreeForm” commands.

In[50]:= x, 2 y  12  FullForm
Out[50]//FullForm= Listx, PowerPlus1, Times2, y, 2

In[51]:= x, 2 y  12  TreeForm
Out[51]//TreeForm=

List

x Power

Plus

1 Times

2 y

2

All special symbols that we met before and will  meet later, like  “&”, “>”, “_”, and including “=”, “:=”,
and  even  “;”,  are  just  shorthands  of  the  corresponding  expressions  with  appropriate  heads.  The
next example uses the command Hold that prevents an expression from evaluation, in order to see
its structure.

In[52]:= Hold
gx_ : x  1;
g2   TreeForm

Out[52]//TreeForm=

Hold

CompoundExpression

SetDelayed

g

Pattern

x _

Plus

x 1

g

2

An element of a list (or a matrix) can be refferred to using double square brackets. Here are several
equivalent (from the point of view of interpretation) ways to do this
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An element of a list (or a matrix) can be refferred to using double square brackets. Here are several
equivalent (from the point of view of interpretation) ways to do this

In[53]:= M 
1 z u  1
0 1 0
d2 0 1

M1, 3
M1, 3
M1,3
M13

Out[53]= 1, z, 1  u, 0, 1, 0, d2, 0, 1
Out[54]= 1  u

Out[55]= 1  u

Out[56]= 1  u

Out[57]= 1  u

The  expression  “M1,3”  means  that  we  take  the  first  element  “M1”  in  the  expression  “M”,  and
then, in  turn, take the 3rd element  in “M1”.  Unexpectedly,  similar  rules  are applicable  to expres-
sions with arbitrary heads, not necessary lists!

In[58]:= b
b1, 2
b1, 2, 2

Out[58]= 7  c3  x2
Out[59]= c3

Out[60]= 3

The head of an expression can be obtained either using “Head” command or as its 0th element,

In[61]:= b
Headb
b0

Out[61]= 7  c3  x2
Out[62]= Power

Out[63]= Power

Replacements
The  replacement  is  one  of  the  most  efficient  operations  in Mathematica.  It  consists  in  replacing
some the parts in a given expression with new ones.
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In[64]:= b
b . x  y
b . Plus  Times
b . Power  pow

Out[64]= 7  c3  x2
Out[65]= 7  c3  y2
Out[66]= 49 c6 x2

Out[67]= pow7  x  powc, 3, 2
Similarly to the delayed assignments,  patterns for the substituted parts can use “_” and conditions.
In that case instead of usual  replacement  symbol  “->” it  is better to use the symbol  “:>” of  delayed
replacement  (approximately  by the same reason that  causes to use the delayed assignment  com-
mand “:=” instead of the usual assignment “=” in the definitions of new functions). Here is an exam-
ple of how the geometric progression can be turned into an exponent!

In[68]:=
1

1   x  O8
 . xk_  xkk
Log

Out[68]= 1  x   x2 2  x3 3  x4 4  x5 5  x6 6  x7 7  O8
Out[69]= 1  x  

x2 2
2

x3 3
6

x4 4
24


x5 5
120


x6 6
720


x7 7
5040

 O8
Out[70]= x   O8

The  symbol  “O8”  is  used  here  for  the  power  expansion.  Now  we  collect  all  the  commands
together:

In[71]:=
1

1   x  O8 . xk_.  ykk  Log
Out[71]= y   O8

We also replaced here the variable “x with “y”. The point in the pattern “k_.” means that it is applyed
for  the optional  value  of  “k”  which  is equal  to 1 in the case of  the exponent.  Without  this point  the
replacenment  would  not  be  applied  to  the  linear  term x x1.  There  is  a  reason  to  Introducing  a
supplementary  variable   as  the  expansion  parameter  has a  reason  of  its  own.  The  following  ver-
sion does not work :

In[72]:=
1
1  x  Ox8
 . xk_  xkk

Out[72]= 1  x  x2  x3  x4  x5  x6  x7  Ox8
Out[73]= 1  x  x2  x3  x4  x5  x6  x7  Ox8

The reason is in the internal form of representation of power series in Mathematica.
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In[74]:=
1

1  2 x  Ox5
  FullForm

Out[74]= 1  2 x  4 x2  8 x3  16 x4  Ox5
Out[75]//FullForm= SeriesDatax, 0, List1, 2, 4, 8, 16, 0, 5, 1

We see that the series is represented by the expansion variable,  the center on the expansion,  the
list of coefficients and the range of their exponents. Neither the monomials  “xk” themselves nor the
symbol “O” are used in the internal representation. They are only used for formatting of the output.
In the next example, we use replacements to create the list of all partitions of a given number n.

In[76]:= n  6;
i1

n 1
1  xi si


SeriesCoefficient, s, 0, n &  Expand 

 . Plus  List & 
 . xi__ xj__  xi,j, xi__k_  xi,i xik2 & 
 . xk__  Sortk, Greater & 
Sort

Out[77]= 6, 3, 3, 4, 2, 5, 1, 2, 2, 2, 3, 2, 1, 4, 1, 1,2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Now the same in detail
1)  Take the product  of  geometric  progressions  and select its  homogeneous  term of  degree n. It  is
the sum of all monomials of the quasihmogeneous degree n, with the degree of the variable xiset to
be i, i=1,2,3,...

In[78]:= 
i1

n 1
1  xi si


SeriesCoefficient, s, 0, n &  Expand

Out[78]= x16  x14 x2  x12 x22  x23  x13 x3  x1 x2 x3  x32  x12 x4  x2 x4  x1 x5  x6
2) Convert the sum into a list

In[79]:=  . Plus  List
Out[79]= x16, x14 x2, x12 x22, x23, x13 x3, x1 x2 x3, x32, x12 x4, x2 x4, x1 x5, x6

3) Replace the product of several variables with indicies by a single variable with the corresponding
multiindex. The command  “//.” means “apply the replacement repeatedly untill the replacement rule
is applicable”.  The list  of  replacement  rules  consists of  two elements,  therefore,  we enclose  it  into
figure  brackets.  The  pattern  “i__”  (with  two  underscore  characters)  means  “a  sequence  of  one  or
more elements”.

In[80]:=  . xi__ xj__  xi,j, xi__k_  xi,i xik2
Out[80]= x1,1,1,1,1,1, x1,1,2,1,1, x1,1,2,2, x2,2,2, x1,1,1,3, x3,1,2, x3,3, x4,1,1, x2,4, x1,5, x6

4) It remains to convert the multiindices thus obtained, after sorting them, to partitions
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In[81]:=  . xk__  Sortk, Greater 
Sort

Out[81]= 6, 3, 3, 4, 2, 5, 1, 2, 2, 2, 3, 2, 1, 4, 1, 1,2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Note that the same goal can be achieved in a slightly simpler way...

In[82]:= IntegerPartitionsn
Out[82]= 6, 5, 1, 4, 2, 4, 1, 1, 3, 3, 3, 2, 1, 3, 1, 1, 1,2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

Lecture 2
Along  with the input and output cells, it is handfull to use the title cells of different levels whose style
can be modified  by means of  the menu.  There are also text  cells  that can be used for  comments.
Comments can be placed also inside the input cell with the help of pairs “” and “”.
The cells with the common title can be closed temporary in order to reduce the space on the screen.
For example,  if  the reader does not need the content of  the first lecture any longer, he or she can
close it.  In order  to close or to open a cell  one can doubleclick  the corresponding  blue bracket  on
the  right  border  of  the  window.  Alternatively,  one  can  use  the  menue  Cell->Grouping->Open  All
Subgroups.

Programming
Standard  programming  tools  like  branching  (If,  Which,  Switch)  and  cycles  (Do,  While,  For)  are
available also in Mathematica. The precise syntax can be checked through the Help (in order to call
Help, put the mouse on the name of the command and press the F1 button on the keyboard); here
we  only  point  out  several  specific  details.  Being  commands  in Mathematica,  they  consist  of  the
Head and the list of arguments in the square brackets.

In[1]:= Za_ : Ifa  0, "zero", "nonzero";
Z0
Z1
Zx

Out[2]= zero

Out[3]= nonzero

Out[4]= Ifx  0, zero, nonzero
Note that if  the result  of the test a==0 is neither True nor False, then the result  of the If  command
remains unevaluated. To fix this, one can add the 4th argument to the If command or to use  “===”
instead of “==”

In[5]:= x  0
x  0

Out[5]= x  0

Out[6]= False

Let  us  look  now  at  the  followig  four  commands,  namely,  Do,  Sum,  Product,  and  Table  having  a
similar syntax
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In[7]:= Cleara;
tot  0;
Dotot  tot  ai, i, 5
tot
Sumai, i, 5
Productai, i, 5
Tableai, i, 5

Out[10]= a1  a2  a3  a4  a5
Out[11]= a1  a2  a3  a4  a5
Out[12]= a1 a2 a3 a4 a5
Out[13]= a1, a2, a3, a4, a5

The  action  of  these  commands  is  also  similar:  they  evaluate  the  expression  for  the  subsequent
values of the iterator in turn. The only difference is that they substitute different heads to the result-
ing list of values, namely: Plus (for Sum), Times (for Product), List (for Table) or no head for Do.
Let  us  point  out  two  specific  features.  First,  the  Sum  and  the  Product  commands  admit  nice  2D
versions

In[14]:= 
i1

5
ai

Out[14]= a1  a2  a3  a4  a5

Second,  the  range  of  values  of  the  iterator  can  be  represented  explicitely  by  a  list.  This  could  be
rather convenient

In[15]:= list  1, q, Sin;
tot  0;
Dotot  tot  ai, i, list
tot
i

list
ai

Out[18]= a1  aq  aSin
Out[19]= a1  aq  aSin

The variables  used for the iterator are `local’  meaning that they do not change the values of these
variables assigned outside of the cycle. Such local variables  can be organized explicitely in one of
the following ways

In[20]:= tot  0;
Blocktot  5, tot
Moduletot  6, tot
Withtot  7, tot
tot

Out[21]= 5

Out[22]= 6

Out[23]= 7

Out[24]= 0

As one can see, the result  is the same in all  three cases. The difference of  these commands  is in
their implementation.  I recommend to use Block, and a concerned reader can figure out the details
in the Help.
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As one can see, the result  is the same in all  three cases. The difference of  these commands  is in
their implementation.  I recommend to use Block, and a concerned reader can figure out the details
in the Help.
Here is an example of using While for finding the Taylor expansion of an implicit function. Note that
the While  command  has two arguments  (the continuation test and the body of  the cycle) but  each
argument  may  contain  a  sequence  of  several  commands  separated  by  a  semicolon.  This  is  a
manifestation of a general (even though somewhat unexpected) principle in Mathematic:

the comma is more important than the semicolon

Namely, the comma separates the arguments of  functions, and the semicolon collects a sequence
of commands inside an argument.

In[25]:= Clearf, y
fx_, y_ : Sin x y  x3  y2;
y  fx, y
y  Blocky  0, k  0, ynew, z, eq, sol,
Whilek  k  1;
k  10,
ynew  y  a xk;
z  ynew  fx, ynew;
eq  SeriesCoefficientz, x, 0, k  0;
sol  Solveeq;
y  ynew . sol1;
y  Ox11 check 

fx, y  y
Out[27]= y  x3  y2  Sinx y
Out[28]= x3  x4  x5  2 x7  5 x8  7 x9  4 x10  Ox11
Out[29]= Ox11

Such  a  big  number  of  auxiliary  variables  is  used  here  to  demonstrate  the  usage  of  “;”.  One  can
readily manage without them in this particular case:

In[30]:= Blocky  0,
Do
y  y  a xk;
y  fx, y 
SeriesCoefficient, x, 0, k & 
Solve  0 & y  y . 1 &,k, 10;

y  Ox11
Out[30]= x3  x4  x5  2 x7  5 x8  7 x9  4 x10  Ox11

Mathematica  provides  also  a  number  of  variations  of  cycles  that  have  no  analogues  in  other  pro-
gramming  languages.  These  are  the  cycles  Nest,  NestWhile,  and  FixedPoint.  An  interesting  pro-
prety of these cycles is that they use a function as one of their arguments.

In[31]:= Nestg, x, 5
Out[31]= gggggx

The  command  Nest  applies  the  function  to  the  initial  value  a  given  number  of  times,  NestWhile
applies  it  until  a  condition  remains  True,  and  FixedPoint  does  while  application  of  the  function
changes  the  result.  Here  are  examples  of  how  these  cycles  can  be  used  to  compute  the  Taylor
expansion of an implicit function.
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The  command  Nest  applies  the  function  to  the  initial  value  a  given  number  of  times,  NestWhile
applies  it  until  a  condition  remains  True,  and  FixedPoint  does  while  application  of  the  function
changes  the  result.  Here  are  examples  of  how  these  cycles  can  be  used  to  compute  the  Taylor
expansion of an implicit function.

In[32]:= Cleary;
y  fx, y
Nestfx,  &, Ox, 10
NestWhilefx,  &, Ox, 5  11 &
FixedPointfx,   Ox11 &, 0

Out[33]= y  x3  y2  Sinx y
Out[34]= x3  x4  x5  2 x7  5 x8  7 x9  4 x10  Ox11
Out[35]= x3  x4  x5  2 x7  5 x8  7 x9  4 x10  Ox11
Out[36]= x3  x4  x5  2 x7  5 x8  7 x9  4 x10  Ox11

Manipulation with lists
In  spite  of  the  fact  that Mathematica  has  all  standard  attributes  of  programming  languages  like
cycles  of  different  kinds,  the  programming  style  in Mathematica  has  its  own  specific  character.  In
particular, it shows up in a wide range of tools of manipulation with lists. The lists can be joined, cut,
rearranged and so on. Here are, for example, several ways to select elements of a given list starting
from the 3rd one.

In[37]:= list  Tableak, k, 7
Droplist, 2
Takelist, 5
list3 ;;

Out[37]= a1, a2, a3, a4, a5, a6, a7
Out[38]= a3, a4, a5, a6, a7
Out[39]= a3, a4, a5, a6, a7
Out[40]= a3, a4, a5, a6, a7

All other tools can easily be found in the Help in the section `See Also’ of any already known com-
mand.
Let us recall the convenient replacement operation “/.”, and also mention existence of two important
commands Map “/@” and Apply “@@”. The first one applies the function to each element of the list
in  turn,  the  second  applies  the  function  to  the  whole  list  (i.e.  it  uses  the  elements  of  the  list  as
arguments of the function).

In[41]:= g  a, b, c
g  a, b, c

Out[41]= ga, gb, gc
Out[42]= ga, b, c

Example. Enumeration of trees
The  “tree-like”  structute  of  data  in Mathematica  is  well  adapted  to  the  problem  of  enumeration  of
(plane) trees. Here is an example of a plane tree. Its vertices are denoted by the symbol “v”.
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In[43]:= t  vvv, vvv, vv, v
TreeFormt, VertexLabeling  False

Out[43]= vvv, vvv, vv, v
Out[44]//TreeForm=

In order not to transform the output of  a tree each time to a specific  form one can use the Format
command. It does not affect the result of computations but just changes automatically the formatting
of the output expressions.

In[45]:= Formatt_v : TreeFormt,
VertexRenderingFunction  Blue, Point &,
ImageSize  Scaled0.08

t

Out[46]=

In fact, the trees used in our enumeration are rooted. It is worth, therefoe, to mark somehow the root
vertex in the output.
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In[47]:= Formatt_v : TreeFormu  t,
VertexRenderingFunction  
If2  u, Text" ", , Blue, Point &,

ImageSize  Scaled0.08
t

Out[48]=



We turn now to enumeration of trees. Let tlistk produce the list of plane trees with k edges.

In[49]:= tlist0  v
tlist1  vv

Out[49]=

Out[50]=



Introduce the “gluing”  operation  of  two subtrees  along the top  right  edge.  Every tree  with n  edges
can be obtained by glung of two subtrees whose total number of edges is equal to n  1.

In[51]:= a_v  b_v : Appenda, b;
tlistk_ :

j0

k1
tlistj  tlistk  1  j;

tlist2
tlist3

Out[53]=






Out[54]= 











 



To make this operation working it remains to add the distributivity property to the introduced gluing
operation.

14 ComputerComputations2015.nb



In[55]:= a___  b_Plus  c___ : a    c &  b;
a___  k_ b_  c___ ; FreeQk, v : k a  b  c;
tlist3
tlist4

Out[57]=












 

Out[58]=







































 

Let  the weight  of  a  vertex  of  valency k  be  the  formal  variable xk,  and  the  weight  of  a  tree  be  the
product  of  the  weights  of  its  internal  vertices  (i.e.  excluding  the  root).  Let  us  enumerate  the  trees
together with their weights. To do that, we insert the corresponding coefficient  into the definition  of
the gluing operation. Here is the final code (consisting of just 5 lines!)

In[59]:= Cleartlist;
a_v  b_v : xLengthb1 Appenda, b;
a___  b_Plus  c___ : a    c &  b;
a___  k_ b_  c___ ; FreeQk, v : k a  b  c;
tlist0  v;
tlistk_ :

j0

k1
tlistj  tlistk  1  j;
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In[65]:= Collecttlist5, x_
Out[65]= x1 x24



 x12 x22 x3























x23














x13 x32





 x2 x4













x3





























x22



















x14 x5


 x4





 x3










x2











 x15 

We are ready now to start experiments.  The generating function T  given below for the numbers of
(unrooted) plane trees satisfies a number of interesting identities that we are going to check experi-
mentally. For a given tree, its root and the initial edge exiting the root can be chosen in 2 n different
ways  (by  the  number  of  halfedges).  This  explains  the  coefficient 1

2 n
 used  in  the  definition  of  the

function T  below.
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In[66]:= ord  6;

T 
n1

ord 1
2 n tlistn . t_v  xLengtht sn  Osord1

Out[67]=
x12 s
2

1
2
x12 x2 s2 

1
2
x12 x22 

1
3
x13 x3 s3 

1
2
x12 x23  x13 x2 x3 

1
4
x14 x4 s4 

1
10
5 x12 x24  20 x13 x22 x3  5 x14 x32  10 x14 x2 x4  2 x15 x5 s5 

1
6
3 x12 x25  20 x13 x23 x3  15 x14 x2 x32  15 x14 x22 x4  6 x15 x3 x4  6 x15 x2 x5  x16 x6 s6  Os7

The derivative over xk enumerates rooted trees having a root of valency k:

In[68]:= Y  x1 T
Out[68]= x1 s  x1 x2 s2  x1 x22  x12 x3 s3  x1 x23  3 x12 x2 x3  x13 x4 s4 

1
10
10 x1 x24  60 x12 x22 x3  20 x13 x32  40 x13 x2 x4  10 x14 x5 s5 

1
6
6 x1 x25  60 x12 x23 x3  60 x13 x2 x32  60 x13 x22 x4  30 x14 x3 x4  30 x14 x2 x5  6 x15 x6 s6  Os7

Here is the identity illustrating the gluing operation for trees

In[69]:= 
k1

ord
k xk xkT  s1 Y2

Out[69]= Os7
The following  identities  are called  the `equations  of  the dispersionless  KdV hierarchy’.  They mean
that erasing a root of valency k we get k trees all of which have a root of valency 1.

In[70]:= Table
k xkT  Yk,k, 5

Out[70]= Os7, Os7, Os7, Os7, Os7
Given a tree with a leaf as a root (i.e. a root of valency 1), erasing this root together with the edge
exiting  from it,  we get  a tree with a root  of  arbitrary valency.  This  provides  an implicit  equation  on
the function Y (the so called string equation)

In[71]:= Y  s
k0

ord
xk1 Yk

s1 Y  x1  x2 Y  x3 Y2  x4 Y3  x5 Y4  x6 Y5  Os6  ExpandAll
Out[71]= Os7
Out[72]= True

Finally, there is an explicit closed factorial formula for the coefficients of the series T .
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In[73]:= x_List :
i



xi . xk_i_  xkii ;
T  

n1

ord n  1 sn 


IntegerPartitions2 n,n1
x  Osord1  ExpandAll

Out[74]= True

Debugging and performance acceleration
If the program `hangs up’ or if the computing time is too big, there is a way to interrupt computations
by pressing  “,” or “.”. In the last resort, one can use the menu item EvaluationQuit Kernel. In
order to reduce the usage of such extreme means it is useful to control the course of computations.
The simplest  recommendation  is to include debugging  prints to the code. A more advanced tool  is
the usage of dynamic expressions

In[75]:= Dynamicn
Out[75]= 10

The  output  value  of  such  expression  is  updated  authomatically  in  real  time  together  with  the
changes of the expression itself

In[76]:= n  0
Don; Pause0.2, 20

Out[76]= 0

Let us mention a number of workarounds whose aim is to increase the performance of Mathematica
(I mention only those that appeared in my practical research; the number of simiar tricks is certainly
much bigger).
It was already mentioned that there is no restriction in Mathematica  in the size of integers. On one
hand, it is convenient: overflow never occurs. On the other hand, this causes unnecessary waste of
resources.  Many  commands  manipulating  with  polynomials  provide  an  option  of  computation
modulo  some  prime  integer.  In  many  cases,  this  is  quite  sufficient  for  applications  but  increases
substantially the speed of computations.

In[78]:= PolynomialRemainderx1000, x3  x  1, x
Out[78]= 23 518 973 106 647 474 243 173 570 831 046 246 926 693 330 712 148 526 032 572 591 687 622 

309 498 489 688 482 516 580 760 616 726 262 316 220 520 458 739 919 681 
41 272 920 637 912 249 073 864 590 582 945 550 865 740 267 991 400 135 197 254 350 357 292 
734 149 703 593 325 545 149 741 399 703 561 147 103 329 416 371 912 158 x 

31 156 006 010 332 160 401 160 473 851 414 794 003 295 789 640 412 352 096 378 804 615 733 
389 710 564 215 305 223 035 363 727 947 153 368 902 855 636 107 767 041 x2

In[79]:= PolynomialRemainderx1000, x3  x  1, x, Modulus  113
Out[79]= 59  35 x  87 x2

Combinatorics  deals  often  with  matrices  of  big  size  with  a  relatively  small  number  of  non-zero
entries. It is convenient to store matrices of this type using the command SparseArray. Most matrix
operations like summation, multiplication, computing determinant, taking eigenvectors and eigenval-
ues are typically set up to work as they do with usual matrices.

In[80]:= M  SparseArrayi_, i_  1, 2, 5  5, 6, 6
Out[80]= SparseArray7, 6, 6
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In[81]:= M  MatrixForm
M.M  MatrixForm

Out[81]//MatrixForm=

1 0 0 0 0 0
0 1 0 0 5 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Out[82]//MatrixForm=

1 0 0 0 0 0
0 1 0 0 10 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

If  the  results  of  computations  are  stores  in  the  replacement  list  of  huge  size,  then,  in  order  to
increase the efficiency, it is worth to apply to this list the command Dispatch. This command packs
the replacement list making a more efficient handling of it by the Mathematica kernel.

In[83]:= repl  Tablexi  i2, i, 10 000;
In[84]:= Shortrepl

Out[84]//Short= x1  1, x2  4,9997, x10 000  100 000 000
In[85]:= Timing 

i1

10 000
xi . repl

Out[85]= 8.140625, 333 383 335 000
In[86]:= disp  Dispatchrepl;
In[87]:= Timing 

i1

10 000
xi . disp

Out[87]= 0.015625, 333 383 335 000
By the way, we used here the Timing command,  yet another useful  tool  to control the efficiency of
computations.
For  a  function  defined  recursively,  it  makes  sence  to  store  the  computed  values  in  order  not  to
cause  the  program  to  call  the  recursion  every  time  when  the  function  is  referred  to.  This  may
increase  the  speed  of  computations  to  several  orders.  For  example,  here  is  the  definition  of  the
Chebyshev polynomials.

In[88]:= ClearT;
T : T1  x;
T : Tn_ : x Tn1  1  x2n  1 xTn1  Expand;
TimingT20

Out[91]= 21.078125, 1  200 x2  6600 x4  84 480 x6  549 120 x8  2 050 048 x10 
4 659 200 x12  6 553 600 x14  5 570 560 x16  2 621 440 x18  524 288 x20

Compare with the timing used when the intermediate values are stored:
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In[92]:= ClearT;
T : T1  x;
T : Tn_ : T : Tn  x Tn1  1  x2n  1 xTn1  Expand;
TimingT20

Out[95]= 0., 1  200 x2  6600 x4  84 480 x6  549 120 x8  2 050 048 x10 
4 659 200 x12  6 553 600 x14  5 570 560 x16  2 621 440 x18  524 288 x20

The  symbol  “/:”  is  used  here  in  order  to  relate  the  definition  of Tn  with  the  symbol T  so  that  the
command Clear[T] could be used to clear the definition in the course of debugging.
If there is a need to store the results of computations to a file and to use them in another session of
Mathematica, this can be done in the following way:

In[96]:= SetDirectoryNotebookDirectory
DumpSave"tmp.mx", T

Out[96]= C:\Users\maxim_2\Documents\Maxim\WNMATH\Разное

Out[97]= T
Without  indication of the directory, Mathematica tries to use the system one (which is, most proba-
bly, write-protected).
The  DumpSave  can  be  replaced  by  just  Save.  The  difference  is  that  Save  stores  the  data  in  the
readable  text  form  but  DumpSave  does  this  in  the  binary  machine-dependent  form  which  is  less
compatible  with  different  systems  but  is  certainly  more  efficient.  We  can  now  stop  the  kernel  or
even exit the Mathematica program.

In[1]:= SetDirectoryNotebookDirectory;
 tmp.mx
All definitions related to the symble T (both the commands defining the Chebyshev polynomials and
the computed values) are restored completely.

In[3]:= ? T
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Global`T

T : SubscriptT, 1  x
T : SubscriptT, 2  1  2 x2
T : SubscriptT, 3  3 x  4 x3
T : SubscriptT, 4  1  8 x2  8 x4
T : SubscriptT, 5  5 x  20 x3  16 x5
T : SubscriptT, 6  1  18 x2  48 x4  32 x6
T : SubscriptT, 7  7 x  56 x3  112 x5  64 x7
T : SubscriptT, 8  1  32 x2  160 x4  256 x6  128 x8
T : SubscriptT, 9  9 x  120 x3  432 x5  576 x7  256 x9
T : SubscriptT, 10  1  50 x2  400 x4  1120 x6  1280 x8  512 x10
T : SubscriptT, 11  11 x  220 x3  1232 x5  2816 x7  2816 x9  1024 x11
T : SubscriptT, 12  1  72 x2  840 x4  3584 x6  6912 x8  6144 x10  2048 x12
T : SubscriptT, 13  13 x  364 x3  2912 x5  9984 x7  16640 x9  13312 x11  4096 x13
T : SubscriptT, 14  1  98 x2  1568 x4  9408 x6  26880 x8  39424 x10  28672 x12  8192 x14
T : SubscriptT, 15 
15 x  560 x3  6048 x5  28800 x7  70400 x9  92160 x11  61440 x13  16384 x15

T : SubscriptT, 16 
1  128 x2  2688 x4  21504 x6  84480 x8  180224 x10  212992 x12  131072 x14  32768 x16

T : SubscriptT, 17 
17 x  816 x3  11424 x5  71808 x7  239360 x9  452608 x11  487424 x13  278528 x15  65536 x17

T : SubscriptT, 18  1  162 x2  4320 x4  44352 x6 
228096 x8  658944 x10  1118208 x12  1105920 x14  589824 x16  131072 x18

T : SubscriptT, 19  19 x  1140 x3  20064 x5  160512 x7 
695552 x9  1770496 x11  2723840 x13  2490368 x15  1245184 x17  262144 x19

T : SubscriptT, 20  1  200 x2  6600 x4  84480 x6  549120 x8 
2050048 x10  4659200 x12  6553600 x14  5570560 x16  2621440 x18  524288 x20

SubscriptT, n_ ^:
T : SubscriptT, n  Expandx SubscriptT, n  1  1x2 xSubscriptT,n1n1 

Lecture 3

Input and output
One can ouput  the  results  of  computations  omitting  the “;”  symbol  at  the end  of  the  line.  Another,
more explicit  way to do that is to use the Print command. It prints out to the output cell all its argu-
ments one after another without spaces. In order to separate the fields, they can be alternated with
text  strings  (enclosed  into  double  quotes).  The  text  strings,  in  turn,  can  include  expressions  using
the StringForm command.
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One can ouput  the  results  of  computations  omitting  the “;”  symbol  at  the end  of  the  line.  Another,
more explicit  way to do that is to use the Print command. It prints out to the output cell all its argu-
ments one after another without spaces. In order to separate the fields, they can be alternated with
text  strings  (enclosed  into  double  quotes).  The  text  strings,  in  turn,  can  include  expressions  using
the StringForm command.

In[4]:= DoPrint"n  ", n, StringForm", 2`1`  `2`", n, 2n, n, 5;
n  1, 21  2
n  2, 22  4
n  3, 23  8
n  4, 24  16
n  5, 25  32

If  the  visual  presentation  of  data  in Mathematica  does  not  satisfy  your  needs,  it  can  be  changed
using the Format command.  It does not change the expression itself  but just the way it appears in
the output.  Assume that  we have  a power  series (or  a polynomial)  whose coefficients  are labelled
by partitions (Young diagrams).

In[5]:= F 
n1

5 


IntegerPartitionsn
Y

i



xi

Out[5]= x1 Y1  x2 Y2  x3 Y3  x4 Y4  x5 Y5  x12 Y1, 1 
x1 x2 Y2, 1  x22 Y2, 2  x1 x3 Y3, 1  x2 x3 Y3, 2  x1 x4 Y4, 1 
x13 Y1, 1, 1  x12 x2 Y2, 1, 1  x1 x22 Y2, 2, 1  x12 x3 Y3, 1, 1 
x14 Y1, 1, 1, 1  x13 x2 Y2, 1, 1, 1  x15 Y1, 1, 1, 1, 1

Here is the way to enhance the visualization of this expression

In[6]:= FormatY_List : YRow
F

Out[7]= x1 Y1  x2 Y2  x3 Y3  x4 Y4  x5 Y5  x12 Y11  x1 x2 Y21  x22 Y22  x1 x3 Y31  x2 x3 Y32 
x1 x4 Y41  x13 Y111  x12 x2 Y211  x1 x22 Y221  x12 x3 Y311  x14 Y1111  x13 x2 Y2111  x15 Y11111

Mathematica  contains a lot of  nice commands  with reduced infix  or prefix  notations without built-in
meaning.  These are brackets  of  different  kinds,  binary operations like  ·,,,,,  and many others.
They can be used  and defined  according  to the needs (similarly  to the way we defined  the  gluing
operation for trees in the previous lecture). It is worth to recall,  however, that these commands are
just  reduced  notations  for  the  corresponding  functions  with  their  own  heads  and  the  lists  of  argu-
ments etc.

In[8]:= a  b  FullForm
Out[8]//FullForm= Wedgea, b

Finally,  if  this  is still  insufficient, Mathematica  provides  the opportunity  to introduce your own nota-
tion. To use it, one needs to load an additional Notation package

In[9]:= Needs"Notation`"
Here is an example of an invented notation for the limit:

In[10]:= Notation limx_ a_ f_  Limitf_, x_  a_ 
In[11]:= lim

x0
SinTanx  TanSinx  ArcSinArcTanx  ArcTanArcSinx

Out[11]= 1

And here is an example of a new notation for the operation of taking square
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In[12]:= Notation x_  x_2 
5

Out[13]= 25

In[14]:=

Cleara, b;a  b3  Expand
Out[15]= a3  3 a b  3 a b  b3
In[16]:= RemoveNotation x_  x_2 

Graphics
Features  of  woking  with  graphics  are  boundless  in Mathematica.  Being  unable  to  describe  all
details,  we will  restrict ourselves  to just consideration  of  several  elementary examples.  The reader
is encouraged to develop and to enhance these examples.
The simplest graphic command is Plot. It is used to draw the graph of a function in one variable

In[17]:= Plotx Sin1  x, x, 1.2, 1.2
Out[17]=

1.0 0.5 0.5 1.0

0.2

0.2

0.4

0.6

0.8

Let us make a number of enhancements. 1) Add two more functions x and -x for better visualization;
2) Add the option PlotRange to specify the Range of the values of the function and AspectRatio to
specify the scaling of the axis; 3) Add a parameter and a simple manipulator for  variating its values
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In[18]:= Manipulate
Plotx Sina  x, x, x, x, 1.2, 1.2,
PlotRange  1.2, 1.2, AspectRatio  1,a, 0, 10

Out[18]=

a

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

Here are the familiar Chebyshev polynomials. They have the property that all critical points are real,
half  of  them have  the critical  value  1, and the remaining  ones have the critical  value 1. The Plot
command works better if the function is computed in advance rather than while plotting the graph.
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In[19]:= Manipulatey  Tn;
Ploty, 1, 1, x, 1.2, 1.2,
PlotRange  1.2, 1.2, AspectRatio  1,n, 1, 30, 1

Out[19]=

n

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

Here I use the ParametricPlot command to plot the cycloid.

In[20]:=

r_ : Cos, Sin;
n  4;
ParametricPlotn r  rn , , 0, 2 

Out[22]=
4 2 2 4

4

2

2

4

In  order  to  plot  something  by  hand,  one  uses  the  Graphics  command.  Its  argument  consists  of  a
sequence  of  `primitives’  and  `directives’  grouped  by  curly  braces.  Primitives  are  the  elementary
objects to be drawn: a point, a line, a circle, a rectangle etc. A directive describes the way to draw
the objects:  colour, dashing,  thickness of  the lines etc. Here is a simple  graphics consisting of  two
circles and a point.
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In[23]:= Manipulate
GraphicsCircle0, 0, n  1, Circlen r, 1,PointSizeLarge, Red, Pointn r  rn ,, 2 , 2 , n, 2, 10, 1

Out[23]=



n

The cycloid drawn above is the trace of  a given point  on the small  circle rolling along the big one.
How to  combine  two graphics  in  one picture?  It  can be  done using  the Show command.  Besides,
the Show command can be supplied with graphics options valid for all graphics command to which
it is applied.
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In[24]:= Manipulate
Show
ParametricPlotn r  rn , , 0, ,
GraphicsCircle0, 0, n  1, Circlen r, 1,PointSizeLarge, Red, Pointn r  rn ,
Axes  False, PlotRange  n  1 1, 1, 1, 1,, 2 , 2 , n, 2, 10, 1

Out[24]=



n

The next example illustrates some interactivity opportunities. Let us consider a matrix composed of
units and zeroes.

In[25]:= n  10;
A  RandomInteger1, n, n;
MatrixFormA

Out[27]//MatrixForm=

1 1 0 1 0 0 0 1 0 0
1 0 0 0 1 0 1 0 0 1
1 1 1 1 0 1 0 1 1 0
1 0 0 0 0 1 0 1 1 0
1 0 0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 1 1 0
0 0 1 0 0 0 1 1 0 1
0 1 1 0 0 0 1 0 0 1
1 0 1 0 1 0 0 1 1 1
0 0 0 1 1 0 1 1 0 1

Let us represent  this  matrix  as a checkboard  whose fields  are colored  in two colors depending  on
the value of the component.  Remark  that graphics uses traditional  orientation of  the axes (the first
one from left to right, the second one from bottom to top). In order to put this in accrodance with the
traditional numeration of rows and columns of matrices we have to rotate the coordinates by 90.
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Let us represent  this  matrix  as a checkboard  whose fields  are colored  in two colors depending  on
the value of the component.  Remark  that graphics uses traditional  orientation of  the axes (the first
one from left to right, the second one from bottom to top). In order to put this in accrodance with the
traditional numeration of rows and columns of matrices we have to rotate the coordinates by 90.

In[28]:= GraphicsTableEdgeFormThin, IfAn1j,i  0, Cyan, Pink, Rectanglei, j,i, n, j, n, ImageSize  150 
Row, " A  ", MatrixFormA &

Out[28]= A 

1 1 0 1 0 0 0 1 0 0
1 0 0 0 1 0 1 0 0 1
1 1 1 1 0 1 0 1 1 0
1 0 0 0 0 1 0 1 1 0
1 0 0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 1 1 0
0 0 1 0 0 0 1 1 0 1
0 1 1 0 0 0 1 0 0 1
1 0 1 0 1 0 0 1 1 1
0 0 0 1 1 0 1 1 0 1

And now we would like to realize the possibility to change the colour of a cell (and the correspond-
ing values of the matrix) by just clicking it with the mouse. For this aim we use the command Click-
Pane.  Its  first  argument  is  the  graphics  itself  (to  which  Dynamic  is  applied),  and  the  second  argu-
ment is the function which is applied each time the mouse is clicked. The argument of the function
is the list of the coordinates of the mouse. In our case we round the coordinates to the integers and
change the corresponding entry of the matrix.

In[29]:= ClickPaneDynamicGraphics
TableEdgeFormThin, IfAn1j,i  0, Cyan, Pink, Rectanglei, j,i, n, j, n, ImageSize  150, " A  ", MatrixFormA  Row,i, j  Round  12 ; If1  i  n && 1  j  n, An1j,i  1  An1j,i &

Out[29]= A 

1 1 0 1 0 0 0 1 0 0
1 0 0 0 1 0 1 0 0 1
1 1 1 1 0 1 0 1 1 0
1 0 0 0 0 1 0 1 1 0
1 0 0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 1 1 0
0 0 1 0 0 0 1 1 0 1
0 1 1 0 0 0 1 0 0 1
1 0 1 0 1 0 0 1 1 1
0 0 0 1 1 0 1 1 0 1

Along  with  the  2D  graphics Mathematica  provides  tools  generating  3D  graphics.  Commands  like
Plot3D  or  ParametricPlot3D  draw  surfaces,  and  using  Graphics3d  one  can  compose  3D  graphic
objects by hand. 3D graphics can be rotated using the mouse.

In[30]:= Clearpp;
ppa_ : Join  TableCos2  i  a z  3, Sin2  i  a z  3, z,i, 0, 2, z, 1, 1  Append, 1 &;
pp0

Out[32]= 1, 0, 1, 1, 0, 1,  1
2
,

3
2
, 1,

 1
2
,

3
2
, 1,  1

2
, 

3
2
, 1,  1

2
, 

3
2
, 1, 1, 0, 1
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In[33]:= Graphics3DTubepp1.1, 0.1, Boxed  False

Out[33]=
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In[34]:= Manipulate
Graphics3DTubeppa, .1, Boxed  False, a, 1.1, 0, 3

Out[34]=

a

Conclusion
We  have  shown  a  very  small  portion  of  tools  provided  by Mathematica.  More  information  can  be
obtained  from  the  Help  as  well  as  by  studying  various  examples  collected  in  the  Demonstrations
project on the Wolfram Website (a reference is avalable in the Help item of the menu).

Some more examples

Enumeration of Chord diagrams
A chord diagram is a collection of 2 n points on the circle split into n pairs (represented by chords).
Two  diagrams  are  isomorphic  (or  just  the  same)  if  they  can  be  obtained  from  one  another  by  an
orientation-preserving diffeomorphism of the circle.
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In[1]:= pt_ : Cos2  , Sin2  ;
Formatdiag___ : Blockn  Length,
GraphicsCircle0, 0, 1,
Thick, TablePointptk  2 n, k, 2 n,
Blue, TableLinept  s2 n , s, , ImageSize  60;

diag1, 2, 3, 4, 5, 6
Out[3]=

In[4]:= smplf_ : TableSortSort   . j_Integer  Modj  k, 2 Length  1,k, 1, 2 Length  Sort  First;
diag1, 3, 2, 5, 4, 6;
dlist0  diag;
dlistn_ : dlistn 
TableAppend . j_Integer ; j  k  j  1, k, 2 n  smplf,k, 1, 2 n  1, , dlistn  1  Flatten  DeleteDuplicates;

dlist4
Length

Out[8]=  , , , , ,

, , , , , ,

, , , , , 
Out[9]= 17

Inversion of a series
x  y  a1 y2  a2 y3 …
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In[10]:= Cleara, y;
Blockc, y,
y  x;
Do
y  y  c xk;

y  y . SeriesCoefficienty 
i1

k1
ai yi1  x, x, 0, k  0 

Solve, c &  First ,k, 2, 6;
y

Out[11]= x  x2 a1  x3 2 a12  a2  x4 5 a13  5 a1 a2  a3  x5 14 a14  21 a12 a2  3 a22  6 a1 a3  a4 
x6 42 a15  84 a13 a2  28 a1 a22  28 a12 a3  7 a2 a3  7 a1 a4  a5

y  x a1 y2  a2 y3 …

In[12]:= Y  Nest x 
i1

5
ai i1 &, Ox, 6  ExpandAll

Y  FixedPointExpandAllx 
i1

6
ai i1  Ox7 &, 0

Y  InverseSeriesy 
i1

5
ai yi1  Oy7, x

Out[12]= x  a1 x2  2 a12  a2 x3  5 a13  5 a1 a2  a3 x4  14 a14  21 a12 a2  3 a22  6 a1 a3  a4 x5 42 a15  84 a13 a2  28 a1 a22  28 a12 a3  7 a2 a3  7 a1 a4  a5 x6  Ox7
Out[13]= Ox7
Out[14]= Ox7
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