
Computer computations
(a short introduction to Mathematica computer
algebra system)

The goal of the course is not to teach the language of Mathematica but to give a rough overview of
numerous opportunities provided by it. The actual syntax of one or another command can be found
in the Help (addressed at any place of the code by the F1 button)

Lecture 1

Simplest operations, variables, and functions
Type a command. To evaluate it press + simultaneously. The result will show up in the
output cell.

In[1]:= 22
Out[1]= 4

In[2]:= Sin 4 
Out[2]=

1
2

To type the exponent I pressed ^. To get the letter  I typed p. In general, to type special
symbols and forms one can use Palettes called from the Mathematica menu. The required form can
be chosen with a mouse. The pop-up menu provides a hint how to type the same form with the
keyboard without using menu.

In[3]:=  x
Sinx  1

Out[3]=
2 Sin x2

Cos x2  Sin x2
In[4]:= 

n1

 1
n2

Out[4]=
2

6
Integers used by Mathematica can be arbitrary large, overflow never occurs. Also there is no restric-
tion on the specified precision of numerical computations

In[5]:= 200
N, 300

Out[5]= 788 657 867 364 790 503 552 363 213 932 185 062 295 135 977 687 173 263 294 742 533 244 359 
449 963 403 342 920 304 284 011 984 623 904 177 212 138 919 638 830 257 642 790 242 637 105 
061 926 624 952 829 931 113 462 857 270 763 317 237 396 988 943 922 445 621 451 664 240 254 
033 291 864 131 227 428 294 853 277 524 242 407 573 903 240 321 257 405 579 568 660 226 031 
904 170 324 062 351 700 858 796 178 922 222 789 623 703 897 374 720 000 000 000 000 000 000 
000 000 000 000 000 000 000 000 000 000

Out[6]= 2.7182818284590452353602874713526624977572470936999595749669676277240766303535 
4759457138217852516642742746639193200305992181741359662904357290033429526059 
5630738132328627943490763233829880753195251019011573834187930702154089149934 
88416750924476146066808226480016847741185374234544243710753907774499207

Commands, once input, can be edited and evaluated again. A cell can contain a sequence of
commands. If a command ends with “;”, then the result is not printed to the output. If a command
ends with a new line, then the result is printed.

In[7]:= b  a  32;
b  5
a  2;
b  5

Out[8]= 5  3  a2
Out[10]= 30

The result of the last executed command can be referred to as “%”:

In[11]:= 2

Out[11]= 900

(Pay attention to the fact that the symbol “%” refers to the result of the last executed command
rather
than to the command printed immediately before the one to be executed).
In addition to the usual assignments “”, there are also so called delayed ones “:”. Compare:

In[12]:= a  1;
b  a  1;
b
a  20;
b

Out[14]= 2

Out[16]= 2

In[17]:= a  1;
b : a  1;
b
a  20;
b

Out[19]= 2

Out[21]= 21

Delayed assignments are worth to be used to define functions (with arguments). The arguments are
put in the square brackets and separated by commas (and the parentheses are only used to group
compound expressions).

2 ComputerComputations2015.nb

Delayed assignments are worth to be used to define functions (with arguments). The arguments are
put in the square brackets and separated by commas (and the parentheses are only used to group
compound expressions).

In[22]:= fx_, y_ : x  y2;
fz2, 1

Out[23]= 1  z22
The underscore symbols mean that x and y can stand for arbitrrary expressions. Without those
signs the definition would be applied to the symbols x and y themselves only.

In[24]:= gx : x  12;
g6
gx

Out[25]= g6
Out[26]= 1  x2

It is possible to supply patterns of the form “x_” with various conditions following the “/;” symbol. If
these conditions are not satisfied, then the expression remains unevaluated.

In[27]:= Clearf;
fn_Integer ; n  0 : n fn  1;
fn_Integer ; n  0 : ;
f0  1;
1
f5
1

f5
1
fc

Out[31]=
1
120

Out[32]= 0

Out[33]=
1
fc
Here the “Clear” command is used to erase all the previous definitions related to the symbol “f”.
Active assignments can be shown using the “?” symbol:

In[34]:= ? f

Global`f

f0  1
fn_Integer ; n  0 : n fn  1
fn_Integer ; n  0 : 
Mathematica (М.) examines the expression to be evaluated and searches for its parts for which
there are defined assignments, and then applies them. The order in which these definitions are
applied is chosen so that more specific ones are applied prior to more general ones. Thus, observ-
ing “f[-5]” M. checks first if the argument “-5” is “0”. Since this is not the case, the first definition is
not applicable. Then it checks if it is a positive integer. Since it is not, the second definition neither is
applicable. Finally, the third definition is applicable and we get the result 1


 0.

ComputerComputations2015.nb 3

Mathematica (М.) examines the expression to be evaluated and searches for its parts for which
there are defined assignments, and then applies them. The order in which these definitions are
applied is chosen so that more specific ones are applied prior to more general ones. Thus, observ-
ing “f[-5]” M. checks first if the argument “-5” is “0”. Since this is not the case, the first definition is
not applicable. Then it checks if it is a positive integer. Since it is not, the second definition neither is
applicable. Finally, the third definition is applicable and we get the result 1


 0.

When calling a function with arguments, along with the usual notation, one can also use prefix and
postfix notation indicated by the symbols “@” and “//”, respectively

In[35]:= f5
f5
5  f

Out[35]= 120

Out[36]= 120

Out[37]= 120

Together with named functions there are also so called pure functions (with no name associated to
them). A pure function is denoted by the symbol “&” at the end and its argument is denoted by “#”.
Compare:

In[38]:= gx_ : x  12;
gq  12 &q

Out[39]= 1  q2
Out[40]= 1  q2

Pure functions in combination with postfix notation are convinient for final formatting of the com-
puted expressions

In[41]:= b  c3  7  x2;
b2  Expand
b2  Collect, x &

Out[42]= 2401  1372 c3  294 c6  28 c9  c12  1372 x  588 c3 x 
84 c6 x  4 c9 x  294 x2  84 c3 x2  6 c6 x2  28 x3  4 c3 x3  x4

Out[43]= 2401  1372 c3  294 c6  28 c9  c12 1372  588 c3  84 c6  4 c9 x  294  84 c3  6 c6 x2  28  4 c3 x3  x4
Lists and other expressions
Arrays, vectors, matricies, and tables are realized in Mathematica as lists and nested lists. A list is a
sequence of its components separated by commas and enclosed into figure brackets “{“,”}”. A
matrix can be input as a table but it is still interpreted internally as a nested list.

In[44]:= 1, 3, a, x  5
1 z u  1
0 1 0
d2 0 1

Out[44]= 1, 3, 20, 5  x
Out[45]= 1, z, 1  u, 0, 1, 0, d2, 0, 1

A list is a simplest example of what is considered as an expression. In fact everything in Mathe-
matica is an expression. An expression consists of a head and a sequence of its elemets. Each
element, in turn, can be either an atom (a number, a variable etc.) or again an expression with its
own head, a list of its elemends, and so on. As a result we get a tree-like expression. For example,
the operations “+“, “”, or taking a power have the heads “Plus”, “Times”, and “Power”, respectively,
and a list has the head “List”.

4 ComputerComputations2015.nb

A list is a simplest example of what is considered as an expression. In fact everything in Mathe-
matica is an expression. An expression consists of a head and a sequence of its elemets. Each
element, in turn, can be either an atom (a number, a variable etc.) or again an expression with its
own head, a list of its elemends, and so on. As a result we get a tree-like expression. For example,
the operations “+“, “”, or taking a power have the heads “Plus”, “Times”, and “Power”, respectively,
and a list has the head “List”.

In[46]:= Plusc, 4
Timesc, 4
Powerc, 4
Listc, 4

Out[46]= 4  c

Out[47]= 4 c

Out[48]= c4

Out[49]= c, 4
The actual structure of an expression can be viewed using “FullForm” or “TreeForm” commands.

In[50]:= x, 2 y  12  FullForm
Out[50]//FullForm= Listx, PowerPlus1, Times2, y, 2

In[51]:= x, 2 y  12  TreeForm
Out[51]//TreeForm=

List

x Power

Plus

1 Times

2 y

2

All special symbols that we met before and will meet later, like “&”, “>”, “_”, and including “=”, “:=”,
and even “;”, are just shorthands of the corresponding expressions with appropriate heads. The
next example uses the command Hold that prevents an expression from evaluation, in order to see
its structure.

In[52]:= Hold
gx_ : x  1;
g2   TreeForm

Out[52]//TreeForm=

Hold

CompoundExpression

SetDelayed

g

Pattern

x _

Plus

x 1

g

2

An element of a list (or a matrix) can be refferred to using double square brackets. Here are several
equivalent (from the point of view of interpretation) ways to do this

ComputerComputations2015.nb 5

An element of a list (or a matrix) can be refferred to using double square brackets. Here are several
equivalent (from the point of view of interpretation) ways to do this

In[53]:= M 
1 z u  1
0 1 0
d2 0 1

M1, 3
M1, 3
M1,3
M13

Out[53]= 1, z, 1  u, 0, 1, 0, d2, 0, 1
Out[54]= 1  u

Out[55]= 1  u

Out[56]= 1  u

Out[57]= 1  u

The expression “M1,3” means that we take the first element “M1” in the expression “M”, and
then, in turn, take the 3rd element in “M1”. Unexpectedly, similar rules are applicable to expres-
sions with arbitrary heads, not necessary lists!

In[58]:= b
b1, 2
b1, 2, 2

Out[58]= 7  c3  x2
Out[59]= c3

Out[60]= 3

The head of an expression can be obtained either using “Head” command or as its 0th element,

In[61]:= b
Headb
b0

Out[61]= 7  c3  x2
Out[62]= Power

Out[63]= Power

Replacements
The replacement is one of the most efficient operations in Mathematica. It consists in replacing
some the parts in a given expression with new ones.

6 ComputerComputations2015.nb

In[64]:= b
b . x  y
b . Plus  Times
b . Power  pow

Out[64]= 7  c3  x2
Out[65]= 7  c3  y2
Out[66]= 49 c6 x2

Out[67]= pow7  x  powc, 3, 2
Similarly to the delayed assignments, patterns for the substituted parts can use “_” and conditions.
In that case instead of usual replacement symbol “->” it is better to use the symbol “:>” of delayed
replacement (approximately by the same reason that causes to use the delayed assignment com-
mand “:=” instead of the usual assignment “=” in the definitions of new functions). Here is an exam-
ple of how the geometric progression can be turned into an exponent!

In[68]:=
1

1   x  O8
 . xk_  xkk
Log

Out[68]= 1  x   x2 2  x3 3  x4 4  x5 5  x6 6  x7 7  O8
Out[69]= 1  x  

x2 2
2

x3 3
6

x4 4
24


x5 5
120


x6 6
720


x7 7
5040

 O8
Out[70]= x   O8

The symbol “O8” is used here for the power expansion. Now we collect all the commands
together:

In[71]:=
1

1   x  O8 . xk_.  ykk  Log
Out[71]= y   O8

We also replaced here the variable “x with “y”. The point in the pattern “k_.” means that it is applyed
for the optional value of “k” which is equal to 1 in the case of the exponent. Without this point the
replacenment would not be applied to the linear term x x1. There is a reason to Introducing a
supplementary variable  as the expansion parameter has a reason of its own. The following ver-
sion does not work :

In[72]:=
1
1  x  Ox8
 . xk_  xkk

Out[72]= 1  x  x2  x3  x4  x5  x6  x7  Ox8
Out[73]= 1  x  x2  x3  x4  x5  x6  x7  Ox8

The reason is in the internal form of representation of power series in Mathematica.

ComputerComputations2015.nb 7

In[74]:=
1

1  2 x  Ox5
  FullForm

Out[74]= 1  2 x  4 x2  8 x3  16 x4  Ox5
Out[75]//FullForm= SeriesDatax, 0, List1, 2, 4, 8, 16, 0, 5, 1

We see that the series is represented by the expansion variable, the center on the expansion, the
list of coefficients and the range of their exponents. Neither the monomials “xk” themselves nor the
symbol “O” are used in the internal representation. They are only used for formatting of the output.
In the next example, we use replacements to create the list of all partitions of a given number n.

In[76]:= n  6;
i1

n 1
1  xi si


SeriesCoefficient, s, 0, n &  Expand 

 . Plus  List & 
 . xi__ xj__  xi,j, xi__k_  xi,i xik2 & 
 . xk__  Sortk, Greater & 
Sort

Out[77]= 6, 3, 3, 4, 2, 5, 1, 2, 2, 2, 3, 2, 1, 4, 1, 1,2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Now the same in detail
1) Take the product of geometric progressions and select its homogeneous term of degree n. It is
the sum of all monomials of the quasihmogeneous degree n, with the degree of the variable xiset to
be i, i=1,2,3,...

In[78]:= 
i1

n 1
1  xi si


SeriesCoefficient, s, 0, n &  Expand

Out[78]= x16  x14 x2  x12 x22  x23  x13 x3  x1 x2 x3  x32  x12 x4  x2 x4  x1 x5  x6
2) Convert the sum into a list

In[79]:=  . Plus  List
Out[79]= x16, x14 x2, x12 x22, x23, x13 x3, x1 x2 x3, x32, x12 x4, x2 x4, x1 x5, x6

3) Replace the product of several variables with indicies by a single variable with the corresponding
multiindex. The command “//.” means “apply the replacement repeatedly untill the replacement rule
is applicable”. The list of replacement rules consists of two elements, therefore, we enclose it into
figure brackets. The pattern “i__” (with two underscore characters) means “a sequence of one or
more elements”.

In[80]:=  . xi__ xj__  xi,j, xi__k_  xi,i xik2
Out[80]= x1,1,1,1,1,1, x1,1,2,1,1, x1,1,2,2, x2,2,2, x1,1,1,3, x3,1,2, x3,3, x4,1,1, x2,4, x1,5, x6

4) It remains to convert the multiindices thus obtained, after sorting them, to partitions

8 ComputerComputations2015.nb

In[81]:=  . xk__  Sortk, Greater 
Sort

Out[81]= 6, 3, 3, 4, 2, 5, 1, 2, 2, 2, 3, 2, 1, 4, 1, 1,2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Note that the same goal can be achieved in a slightly simpler way...

In[82]:= IntegerPartitionsn
Out[82]= 6, 5, 1, 4, 2, 4, 1, 1, 3, 3, 3, 2, 1, 3, 1, 1, 1,2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

Lecture 2
Along with the input and output cells, it is handfull to use the title cells of different levels whose style
can be modified by means of the menu. There are also text cells that can be used for comments.
Comments can be placed also inside the input cell with the help of pairs “” and “”.
The cells with the common title can be closed temporary in order to reduce the space on the screen.
For example, if the reader does not need the content of the first lecture any longer, he or she can
close it. In order to close or to open a cell one can doubleclick the corresponding blue bracket on
the right border of the window. Alternatively, one can use the menue Cell->Grouping->Open All
Subgroups.

Programming
Standard programming tools like branching (If, Which, Switch) and cycles (Do, While, For) are
available also in Mathematica. The precise syntax can be checked through the Help (in order to call
Help, put the mouse on the name of the command and press the F1 button on the keyboard); here
we only point out several specific details. Being commands in Mathematica, they consist of the
Head and the list of arguments in the square brackets.

In[1]:= Za_ : Ifa  0, "zero", "nonzero";
Z0
Z1
Zx

Out[2]= zero

Out[3]= nonzero

Out[4]= Ifx  0, zero, nonzero
Note that if the result of the test a==0 is neither True nor False, then the result of the If command
remains unevaluated. To fix this, one can add the 4th argument to the If command or to use “===”
instead of “==”

In[5]:= x  0
x  0

Out[5]= x  0

Out[6]= False

Let us look now at the followig four commands, namely, Do, Sum, Product, and Table having a
similar syntax

ComputerComputations2015.nb 9

In[7]:= Cleara;
tot  0;
Dotot  tot  ai, i, 5
tot
Sumai, i, 5
Productai, i, 5
Tableai, i, 5

Out[10]= a1  a2  a3  a4  a5
Out[11]= a1  a2  a3  a4  a5
Out[12]= a1 a2 a3 a4 a5
Out[13]= a1, a2, a3, a4, a5

The action of these commands is also similar: they evaluate the expression for the subsequent
values of the iterator in turn. The only difference is that they substitute different heads to the result-
ing list of values, namely: Plus (for Sum), Times (for Product), List (for Table) or no head for Do.
Let us point out two specific features. First, the Sum and the Product commands admit nice 2D
versions

In[14]:= 
i1

5
ai

Out[14]= a1  a2  a3  a4  a5

Second, the range of values of the iterator can be represented explicitely by a list. This could be
rather convenient

In[15]:= list  1, q, Sin;
tot  0;
Dotot  tot  ai, i, list
tot
i

list
ai

Out[18]= a1  aq  aSin
Out[19]= a1  aq  aSin

The variables used for the iterator are `local’ meaning that they do not change the values of these
variables assigned outside of the cycle. Such local variables can be organized explicitely in one of
the following ways

In[20]:= tot  0;
Blocktot  5, tot
Moduletot  6, tot
Withtot  7, tot
tot

Out[21]= 5

Out[22]= 6

Out[23]= 7

Out[24]= 0

As one can see, the result is the same in all three cases. The difference of these commands is in
their implementation. I recommend to use Block, and a concerned reader can figure out the details
in the Help.

10 ComputerComputations2015.nb

As one can see, the result is the same in all three cases. The difference of these commands is in
their implementation. I recommend to use Block, and a concerned reader can figure out the details
in the Help.
Here is an example of using While for finding the Taylor expansion of an implicit function. Note that
the While command has two arguments (the continuation test and the body of the cycle) but each
argument may contain a sequence of several commands separated by a semicolon. This is a
manifestation of a general (even though somewhat unexpected) principle in Mathematic:

the comma is more important than the semicolon

Namely, the comma separates the arguments of functions, and the semicolon collects a sequence
of commands inside an argument.

In[25]:= Clearf, y
fx_, y_ : Sin x y  x3  y2;
y  fx, y
y  Blocky  0, k  0, ynew, z, eq, sol,
Whilek  k  1;
k  10,
ynew  y  a xk;
z  ynew  fx, ynew;
eq  SeriesCoefficientz, x, 0, k  0;
sol  Solveeq;
y  ynew . sol1;
y  Ox11 check 

fx, y  y
Out[27]= y  x3  y2  Sinx y
Out[28]= x3  x4  x5  2 x7  5 x8  7 x9  4 x10  Ox11
Out[29]= Ox11

Such a big number of auxiliary variables is used here to demonstrate the usage of “;”. One can
readily manage without them in this particular case:

In[30]:= Blocky  0,
Do
y  y  a xk;
y  fx, y 
SeriesCoefficient, x, 0, k & 
Solve  0 & y  y . 1 &,k, 10;

y  Ox11
Out[30]= x3  x4  x5  2 x7  5 x8  7 x9  4 x10  Ox11

Mathematica provides also a number of variations of cycles that have no analogues in other pro-
gramming languages. These are the cycles Nest, NestWhile, and FixedPoint. An interesting pro-
prety of these cycles is that they use a function as one of their arguments.

In[31]:= Nestg, x, 5
Out[31]= gggggx

The command Nest applies the function to the initial value a given number of times, NestWhile
applies it until a condition remains True, and FixedPoint does while application of the function
changes the result. Here are examples of how these cycles can be used to compute the Taylor
expansion of an implicit function.

ComputerComputations2015.nb 11

The command Nest applies the function to the initial value a given number of times, NestWhile
applies it until a condition remains True, and FixedPoint does while application of the function
changes the result. Here are examples of how these cycles can be used to compute the Taylor
expansion of an implicit function.

In[32]:= Cleary;
y  fx, y
Nestfx,  &, Ox, 10
NestWhilefx,  &, Ox, 5  11 &
FixedPointfx,   Ox11 &, 0

Out[33]= y  x3  y2  Sinx y
Out[34]= x3  x4  x5  2 x7  5 x8  7 x9  4 x10  Ox11
Out[35]= x3  x4  x5  2 x7  5 x8  7 x9  4 x10  Ox11
Out[36]= x3  x4  x5  2 x7  5 x8  7 x9  4 x10  Ox11

Manipulation with lists
In spite of the fact that Mathematica has all standard attributes of programming languages like
cycles of different kinds, the programming style in Mathematica has its own specific character. In
particular, it shows up in a wide range of tools of manipulation with lists. The lists can be joined, cut,
rearranged and so on. Here are, for example, several ways to select elements of a given list starting
from the 3rd one.

In[37]:= list  Tableak, k, 7
Droplist, 2
Takelist, 5
list3 ;;

Out[37]= a1, a2, a3, a4, a5, a6, a7
Out[38]= a3, a4, a5, a6, a7
Out[39]= a3, a4, a5, a6, a7
Out[40]= a3, a4, a5, a6, a7

All other tools can easily be found in the Help in the section `See Also’ of any already known com-
mand.
Let us recall the convenient replacement operation “/.”, and also mention existence of two important
commands Map “/@” and Apply “@@”. The first one applies the function to each element of the list
in turn, the second applies the function to the whole list (i.e. it uses the elements of the list as
arguments of the function).

In[41]:= g  a, b, c
g  a, b, c

Out[41]= ga, gb, gc
Out[42]= ga, b, c

Example. Enumeration of trees
The “tree-like” structute of data in Mathematica is well adapted to the problem of enumeration of
(plane) trees. Here is an example of a plane tree. Its vertices are denoted by the symbol “v”.

12 ComputerComputations2015.nb

In[43]:= t  vvv, vvv, vv, v
TreeFormt, VertexLabeling  False

Out[43]= vvv, vvv, vv, v
Out[44]//TreeForm=

In order not to transform the output of a tree each time to a specific form one can use the Format
command. It does not affect the result of computations but just changes automatically the formatting
of the output expressions.

In[45]:= Formatt_v : TreeFormt,
VertexRenderingFunction  Blue, Point &,
ImageSize  Scaled0.08

t

Out[46]=

In fact, the trees used in our enumeration are rooted. It is worth, therefoe, to mark somehow the root
vertex in the output.

ComputerComputations2015.nb 13

In[47]:= Formatt_v : TreeFormu  t,
VertexRenderingFunction  
If2  u, Text" ", , Blue, Point &,

ImageSize  Scaled0.08
t

Out[48]=



We turn now to enumeration of trees. Let tlistk produce the list of plane trees with k edges.

In[49]:= tlist0  v
tlist1  vv

Out[49]=

Out[50]=



Introduce the “gluing” operation of two subtrees along the top right edge. Every tree with n edges
can be obtained by glung of two subtrees whose total number of edges is equal to n  1.

In[51]:= a_v  b_v : Appenda, b;
tlistk_ :

j0

k1
tlistj  tlistk  1  j;

tlist2
tlist3

Out[53]=






Out[54]= 











 



To make this operation working it remains to add the distributivity property to the introduced gluing
operation.

14 ComputerComputations2015.nb

In[55]:= a___  b_Plus  c___ : a    c &  b;
a___  k_ b_  c___ ; FreeQk, v : k a  b  c;
tlist3
tlist4

Out[57]=












 

Out[58]=







































 

Let the weight of a vertex of valency k be the formal variable xk, and the weight of a tree be the
product of the weights of its internal vertices (i.e. excluding the root). Let us enumerate the trees
together with their weights. To do that, we insert the corresponding coefficient into the definition of
the gluing operation. Here is the final code (consisting of just 5 lines!)

In[59]:= Cleartlist;
a_v  b_v : xLengthb1 Appenda, b;
a___  b_Plus  c___ : a    c &  b;
a___  k_ b_  c___ ; FreeQk, v : k a  b  c;
tlist0  v;
tlistk_ :

j0

k1
tlistj  tlistk  1  j;

ComputerComputations2015.nb 15

In[65]:= Collecttlist5, x_
Out[65]= x1 x24



 x12 x22 x3























x23














x13 x32





 x2 x4













x3





























x22



















x14 x5


 x4





 x3










x2











 x15 

We are ready now to start experiments. The generating function T given below for the numbers of
(unrooted) plane trees satisfies a number of interesting identities that we are going to check experi-
mentally. For a given tree, its root and the initial edge exiting the root can be chosen in 2 n different
ways (by the number of halfedges). This explains the coefficient 1

2 n
 used in the definition of the

function T below.

16 ComputerComputations2015.nb

In[66]:= ord  6;

T 
n1

ord 1
2 n tlistn . t_v  xLengtht sn  Osord1

Out[67]=
x12 s
2

1
2
x12 x2 s2 

1
2
x12 x22 

1
3
x13 x3 s3 

1
2
x12 x23  x13 x2 x3 

1
4
x14 x4 s4 

1
10
5 x12 x24  20 x13 x22 x3  5 x14 x32  10 x14 x2 x4  2 x15 x5 s5 

1
6
3 x12 x25  20 x13 x23 x3  15 x14 x2 x32  15 x14 x22 x4  6 x15 x3 x4  6 x15 x2 x5  x16 x6 s6  Os7

The derivative over xk enumerates rooted trees having a root of valency k:

In[68]:= Y  x1 T
Out[68]= x1 s  x1 x2 s2  x1 x22  x12 x3 s3  x1 x23  3 x12 x2 x3  x13 x4 s4 

1
10
10 x1 x24  60 x12 x22 x3  20 x13 x32  40 x13 x2 x4  10 x14 x5 s5 

1
6
6 x1 x25  60 x12 x23 x3  60 x13 x2 x32  60 x13 x22 x4  30 x14 x3 x4  30 x14 x2 x5  6 x15 x6 s6  Os7

Here is the identity illustrating the gluing operation for trees

In[69]:= 
k1

ord
k xk xkT  s1 Y2

Out[69]= Os7
The following identities are called the `equations of the dispersionless KdV hierarchy’. They mean
that erasing a root of valency k we get k trees all of which have a root of valency 1.

In[70]:= Table
k xkT  Yk,k, 5

Out[70]= Os7, Os7, Os7, Os7, Os7
Given a tree with a leaf as a root (i.e. a root of valency 1), erasing this root together with the edge
exiting from it, we get a tree with a root of arbitrary valency. This provides an implicit equation on
the function Y (the so called string equation)

In[71]:= Y  s
k0

ord
xk1 Yk

s1 Y  x1  x2 Y  x3 Y2  x4 Y3  x5 Y4  x6 Y5  Os6  ExpandAll
Out[71]= Os7
Out[72]= True

Finally, there is an explicit closed factorial formula for the coefficients of the series T .

ComputerComputations2015.nb 17

In[73]:= x_List :
i



xi . xk_i_  xkii ;
T  

n1

ord n  1 sn 


IntegerPartitions2 n,n1
x  Osord1  ExpandAll

Out[74]= True

Debugging and performance acceleration
If the program `hangs up’ or if the computing time is too big, there is a way to interrupt computations
by pressing “,” or “.”. In the last resort, one can use the menu item EvaluationQuit Kernel. In
order to reduce the usage of such extreme means it is useful to control the course of computations.
The simplest recommendation is to include debugging prints to the code. A more advanced tool is
the usage of dynamic expressions

In[75]:= Dynamicn
Out[75]= 10

The output value of such expression is updated authomatically in real time together with the
changes of the expression itself

In[76]:= n  0
Don; Pause0.2, 20

Out[76]= 0

Let us mention a number of workarounds whose aim is to increase the performance of Mathematica
(I mention only those that appeared in my practical research; the number of simiar tricks is certainly
much bigger).
It was already mentioned that there is no restriction in Mathematica in the size of integers. On one
hand, it is convenient: overflow never occurs. On the other hand, this causes unnecessary waste of
resources. Many commands manipulating with polynomials provide an option of computation
modulo some prime integer. In many cases, this is quite sufficient for applications but increases
substantially the speed of computations.

In[78]:= PolynomialRemainderx1000, x3  x  1, x
Out[78]= 23 518 973 106 647 474 243 173 570 831 046 246 926 693 330 712 148 526 032 572 591 687 622 

309 498 489 688 482 516 580 760 616 726 262 316 220 520 458 739 919 681 
41 272 920 637 912 249 073 864 590 582 945 550 865 740 267 991 400 135 197 254 350 357 292 
734 149 703 593 325 545 149 741 399 703 561 147 103 329 416 371 912 158 x 

31 156 006 010 332 160 401 160 473 851 414 794 003 295 789 640 412 352 096 378 804 615 733 
389 710 564 215 305 223 035 363 727 947 153 368 902 855 636 107 767 041 x2

In[79]:= PolynomialRemainderx1000, x3  x  1, x, Modulus  113
Out[79]= 59  35 x  87 x2

Combinatorics deals often with matrices of big size with a relatively small number of non-zero
entries. It is convenient to store matrices of this type using the command SparseArray. Most matrix
operations like summation, multiplication, computing determinant, taking eigenvectors and eigenval-
ues are typically set up to work as they do with usual matrices.

In[80]:= M  SparseArrayi_, i_  1, 2, 5  5, 6, 6
Out[80]= SparseArray7, 6, 6

18 ComputerComputations2015.nb

In[81]:= M  MatrixForm
M.M  MatrixForm

Out[81]//MatrixForm=

1 0 0 0 0 0
0 1 0 0 5 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Out[82]//MatrixForm=

1 0 0 0 0 0
0 1 0 0 10 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

If the results of computations are stores in the replacement list of huge size, then, in order to
increase the efficiency, it is worth to apply to this list the command Dispatch. This command packs
the replacement list making a more efficient handling of it by the Mathematica kernel.

In[83]:= repl  Tablexi  i2, i, 10 000;
In[84]:= Shortrepl

Out[84]//Short= x1  1, x2  4,9997, x10 000  100 000 000
In[85]:= Timing 

i1

10 000
xi . repl

Out[85]= 8.140625, 333 383 335 000
In[86]:= disp  Dispatchrepl;
In[87]:= Timing 

i1

10 000
xi . disp

Out[87]= 0.015625, 333 383 335 000
By the way, we used here the Timing command, yet another useful tool to control the efficiency of
computations.
For a function defined recursively, it makes sence to store the computed values in order not to
cause the program to call the recursion every time when the function is referred to. This may
increase the speed of computations to several orders. For example, here is the definition of the
Chebyshev polynomials.

In[88]:= ClearT;
T : T1  x;
T : Tn_ : x Tn1  1  x2n  1 xTn1  Expand;
TimingT20

Out[91]= 21.078125, 1  200 x2  6600 x4  84 480 x6  549 120 x8  2 050 048 x10 
4 659 200 x12  6 553 600 x14  5 570 560 x16  2 621 440 x18  524 288 x20

Compare with the timing used when the intermediate values are stored:

ComputerComputations2015.nb 19

In[92]:= ClearT;
T : T1  x;
T : Tn_ : T : Tn  x Tn1  1  x2n  1 xTn1  Expand;
TimingT20

Out[95]= 0., 1  200 x2  6600 x4  84 480 x6  549 120 x8  2 050 048 x10 
4 659 200 x12  6 553 600 x14  5 570 560 x16  2 621 440 x18  524 288 x20

The symbol “/:” is used here in order to relate the definition of Tn with the symbol T so that the
command Clear[T] could be used to clear the definition in the course of debugging.
If there is a need to store the results of computations to a file and to use them in another session of
Mathematica, this can be done in the following way:

In[96]:= SetDirectoryNotebookDirectory
DumpSave"tmp.mx", T

Out[96]= C:\Users\maxim_2\Documents\Maxim\WNMATH\Разное

Out[97]= T
Without indication of the directory, Mathematica tries to use the system one (which is, most proba-
bly, write-protected).
The DumpSave can be replaced by just Save. The difference is that Save stores the data in the
readable text form but DumpSave does this in the binary machine-dependent form which is less
compatible with different systems but is certainly more efficient. We can now stop the kernel or
even exit the Mathematica program.

In[1]:= SetDirectoryNotebookDirectory;
 tmp.mx
All definitions related to the symble T (both the commands defining the Chebyshev polynomials and
the computed values) are restored completely.

In[3]:= ? T

20 ComputerComputations2015.nb

Global`T

T : SubscriptT, 1  x
T : SubscriptT, 2  1  2 x2
T : SubscriptT, 3  3 x  4 x3
T : SubscriptT, 4  1  8 x2  8 x4
T : SubscriptT, 5  5 x  20 x3  16 x5
T : SubscriptT, 6  1  18 x2  48 x4  32 x6
T : SubscriptT, 7  7 x  56 x3  112 x5  64 x7
T : SubscriptT, 8  1  32 x2  160 x4  256 x6  128 x8
T : SubscriptT, 9  9 x  120 x3  432 x5  576 x7  256 x9
T : SubscriptT, 10  1  50 x2  400 x4  1120 x6  1280 x8  512 x10
T : SubscriptT, 11  11 x  220 x3  1232 x5  2816 x7  2816 x9  1024 x11
T : SubscriptT, 12  1  72 x2  840 x4  3584 x6  6912 x8  6144 x10  2048 x12
T : SubscriptT, 13  13 x  364 x3  2912 x5  9984 x7  16640 x9  13312 x11  4096 x13
T : SubscriptT, 14  1  98 x2  1568 x4  9408 x6  26880 x8  39424 x10  28672 x12  8192 x14
T : SubscriptT, 15 
15 x  560 x3  6048 x5  28800 x7  70400 x9  92160 x11  61440 x13  16384 x15

T : SubscriptT, 16 
1  128 x2  2688 x4  21504 x6  84480 x8  180224 x10  212992 x12  131072 x14  32768 x16

T : SubscriptT, 17 
17 x  816 x3  11424 x5  71808 x7  239360 x9  452608 x11  487424 x13  278528 x15  65536 x17

T : SubscriptT, 18  1  162 x2  4320 x4  44352 x6 
228096 x8  658944 x10  1118208 x12  1105920 x14  589824 x16  131072 x18

T : SubscriptT, 19  19 x  1140 x3  20064 x5  160512 x7 
695552 x9  1770496 x11  2723840 x13  2490368 x15  1245184 x17  262144 x19

T : SubscriptT, 20  1  200 x2  6600 x4  84480 x6  549120 x8 
2050048 x10  4659200 x12  6553600 x14  5570560 x16  2621440 x18  524288 x20

SubscriptT, n_ ^:
T : SubscriptT, n  Expandx SubscriptT, n  1  1x2 xSubscriptT,n1n1 

Lecture 3

Input and output
One can ouput the results of computations omitting the “;” symbol at the end of the line. Another,
more explicit way to do that is to use the Print command. It prints out to the output cell all its argu-
ments one after another without spaces. In order to separate the fields, they can be alternated with
text strings (enclosed into double quotes). The text strings, in turn, can include expressions using
the StringForm command.

ComputerComputations2015.nb 21

One can ouput the results of computations omitting the “;” symbol at the end of the line. Another,
more explicit way to do that is to use the Print command. It prints out to the output cell all its argu-
ments one after another without spaces. In order to separate the fields, they can be alternated with
text strings (enclosed into double quotes). The text strings, in turn, can include expressions using
the StringForm command.

In[4]:= DoPrint"n  ", n, StringForm", 2`1`  `2`", n, 2n, n, 5;
n  1, 21  2
n  2, 22  4
n  3, 23  8
n  4, 24  16
n  5, 25  32

If the visual presentation of data in Mathematica does not satisfy your needs, it can be changed
using the Format command. It does not change the expression itself but just the way it appears in
the output. Assume that we have a power series (or a polynomial) whose coefficients are labelled
by partitions (Young diagrams).

In[5]:= F 
n1

5 


IntegerPartitionsn
Y

i



xi

Out[5]= x1 Y1  x2 Y2  x3 Y3  x4 Y4  x5 Y5  x12 Y1, 1 
x1 x2 Y2, 1  x22 Y2, 2  x1 x3 Y3, 1  x2 x3 Y3, 2  x1 x4 Y4, 1 
x13 Y1, 1, 1  x12 x2 Y2, 1, 1  x1 x22 Y2, 2, 1  x12 x3 Y3, 1, 1 
x14 Y1, 1, 1, 1  x13 x2 Y2, 1, 1, 1  x15 Y1, 1, 1, 1, 1

Here is the way to enhance the visualization of this expression

In[6]:= FormatY_List : YRow
F

Out[7]= x1 Y1  x2 Y2  x3 Y3  x4 Y4  x5 Y5  x12 Y11  x1 x2 Y21  x22 Y22  x1 x3 Y31  x2 x3 Y32 
x1 x4 Y41  x13 Y111  x12 x2 Y211  x1 x22 Y221  x12 x3 Y311  x14 Y1111  x13 x2 Y2111  x15 Y11111

Mathematica contains a lot of nice commands with reduced infix or prefix notations without built-in
meaning. These are brackets of different kinds, binary operations like ·,,,,, and many others.
They can be used and defined according to the needs (similarly to the way we defined the gluing
operation for trees in the previous lecture). It is worth to recall, however, that these commands are
just reduced notations for the corresponding functions with their own heads and the lists of argu-
ments etc.

In[8]:= a  b  FullForm
Out[8]//FullForm= Wedgea, b

Finally, if this is still insufficient, Mathematica provides the opportunity to introduce your own nota-
tion. To use it, one needs to load an additional Notation package

In[9]:= Needs"Notation`"
Here is an example of an invented notation for the limit:

In[10]:= Notation limx_ a_ f_  Limitf_, x_  a_ 
In[11]:= lim

x0
SinTanx  TanSinx  ArcSinArcTanx  ArcTanArcSinx

Out[11]= 1

And here is an example of a new notation for the operation of taking square

22 ComputerComputations2015.nb

In[12]:= Notation x_  x_2 
5

Out[13]= 25

In[14]:=

Cleara, b;a  b3  Expand
Out[15]= a3  3 a b  3 a b  b3
In[16]:= RemoveNotation x_  x_2 

Graphics
Features of woking with graphics are boundless in Mathematica. Being unable to describe all
details, we will restrict ourselves to just consideration of several elementary examples. The reader
is encouraged to develop and to enhance these examples.
The simplest graphic command is Plot. It is used to draw the graph of a function in one variable

In[17]:= Plotx Sin1  x, x, 1.2, 1.2
Out[17]=

1.0 0.5 0.5 1.0

0.2

0.2

0.4

0.6

0.8

Let us make a number of enhancements. 1) Add two more functions x and -x for better visualization;
2) Add the option PlotRange to specify the Range of the values of the function and AspectRatio to
specify the scaling of the axis; 3) Add a parameter and a simple manipulator for variating its values

ComputerComputations2015.nb 23

In[18]:= Manipulate
Plotx Sina  x, x, x, x, 1.2, 1.2,
PlotRange  1.2, 1.2, AspectRatio  1,a, 0, 10

Out[18]=

a

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

Here are the familiar Chebyshev polynomials. They have the property that all critical points are real,
half of them have the critical value 1, and the remaining ones have the critical value 1. The Plot
command works better if the function is computed in advance rather than while plotting the graph.

24 ComputerComputations2015.nb

In[19]:= Manipulatey  Tn;
Ploty, 1, 1, x, 1.2, 1.2,
PlotRange  1.2, 1.2, AspectRatio  1,n, 1, 30, 1

Out[19]=

n

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

Here I use the ParametricPlot command to plot the cycloid.

In[20]:=

r_ : Cos, Sin;
n  4;
ParametricPlotn r  rn , , 0, 2 

Out[22]=
4 2 2 4

4

2

2

4

In order to plot something by hand, one uses the Graphics command. Its argument consists of a
sequence of `primitives’ and `directives’ grouped by curly braces. Primitives are the elementary
objects to be drawn: a point, a line, a circle, a rectangle etc. A directive describes the way to draw
the objects: colour, dashing, thickness of the lines etc. Here is a simple graphics consisting of two
circles and a point.

ComputerComputations2015.nb 25

In[23]:= Manipulate
GraphicsCircle0, 0, n  1, Circlen r, 1,PointSizeLarge, Red, Pointn r  rn ,, 2 , 2 , n, 2, 10, 1

Out[23]=



n

The cycloid drawn above is the trace of a given point on the small circle rolling along the big one.
How to combine two graphics in one picture? It can be done using the Show command. Besides,
the Show command can be supplied with graphics options valid for all graphics command to which
it is applied.

26 ComputerComputations2015.nb

In[24]:= Manipulate
Show
ParametricPlotn r  rn , , 0, ,
GraphicsCircle0, 0, n  1, Circlen r, 1,PointSizeLarge, Red, Pointn r  rn ,
Axes  False, PlotRange  n  1 1, 1, 1, 1,, 2 , 2 , n, 2, 10, 1

Out[24]=



n

The next example illustrates some interactivity opportunities. Let us consider a matrix composed of
units and zeroes.

In[25]:= n  10;
A  RandomInteger1, n, n;
MatrixFormA

Out[27]//MatrixForm=

1 1 0 1 0 0 0 1 0 0
1 0 0 0 1 0 1 0 0 1
1 1 1 1 0 1 0 1 1 0
1 0 0 0 0 1 0 1 1 0
1 0 0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 1 1 0
0 0 1 0 0 0 1 1 0 1
0 1 1 0 0 0 1 0 0 1
1 0 1 0 1 0 0 1 1 1
0 0 0 1 1 0 1 1 0 1

Let us represent this matrix as a checkboard whose fields are colored in two colors depending on
the value of the component. Remark that graphics uses traditional orientation of the axes (the first
one from left to right, the second one from bottom to top). In order to put this in accrodance with the
traditional numeration of rows and columns of matrices we have to rotate the coordinates by 90.

ComputerComputations2015.nb 27

Let us represent this matrix as a checkboard whose fields are colored in two colors depending on
the value of the component. Remark that graphics uses traditional orientation of the axes (the first
one from left to right, the second one from bottom to top). In order to put this in accrodance with the
traditional numeration of rows and columns of matrices we have to rotate the coordinates by 90.

In[28]:= GraphicsTableEdgeFormThin, IfAn1j,i  0, Cyan, Pink, Rectanglei, j,i, n, j, n, ImageSize  150 
Row, " A  ", MatrixFormA &

Out[28]= A 

1 1 0 1 0 0 0 1 0 0
1 0 0 0 1 0 1 0 0 1
1 1 1 1 0 1 0 1 1 0
1 0 0 0 0 1 0 1 1 0
1 0 0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 1 1 0
0 0 1 0 0 0 1 1 0 1
0 1 1 0 0 0 1 0 0 1
1 0 1 0 1 0 0 1 1 1
0 0 0 1 1 0 1 1 0 1

And now we would like to realize the possibility to change the colour of a cell (and the correspond-
ing values of the matrix) by just clicking it with the mouse. For this aim we use the command Click-
Pane. Its first argument is the graphics itself (to which Dynamic is applied), and the second argu-
ment is the function which is applied each time the mouse is clicked. The argument of the function
is the list of the coordinates of the mouse. In our case we round the coordinates to the integers and
change the corresponding entry of the matrix.

In[29]:= ClickPaneDynamicGraphics
TableEdgeFormThin, IfAn1j,i  0, Cyan, Pink, Rectanglei, j,i, n, j, n, ImageSize  150, " A  ", MatrixFormA  Row,i, j  Round  12 ; If1  i  n && 1  j  n, An1j,i  1  An1j,i &

Out[29]= A 

1 1 0 1 0 0 0 1 0 0
1 0 0 0 1 0 1 0 0 1
1 1 1 1 0 1 0 1 1 0
1 0 0 0 0 1 0 1 1 0
1 0 0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 1 1 0
0 0 1 0 0 0 1 1 0 1
0 1 1 0 0 0 1 0 0 1
1 0 1 0 1 0 0 1 1 1
0 0 0 1 1 0 1 1 0 1

Along with the 2D graphics Mathematica provides tools generating 3D graphics. Commands like
Plot3D or ParametricPlot3D draw surfaces, and using Graphics3d one can compose 3D graphic
objects by hand. 3D graphics can be rotated using the mouse.

In[30]:= Clearpp;
ppa_ : Join  TableCos2  i  a z  3, Sin2  i  a z  3, z,i, 0, 2, z, 1, 1  Append, 1 &;
pp0

Out[32]= 1, 0, 1, 1, 0, 1,  1
2
,

3
2
, 1,

 1
2
,

3
2
, 1,  1

2
, 

3
2
, 1,  1

2
, 

3
2
, 1, 1, 0, 1

28 ComputerComputations2015.nb

In[33]:= Graphics3DTubepp1.1, 0.1, Boxed  False

Out[33]=

ComputerComputations2015.nb 29

In[34]:= Manipulate
Graphics3DTubeppa, .1, Boxed  False, a, 1.1, 0, 3

Out[34]=

a

Conclusion
We have shown a very small portion of tools provided by Mathematica. More information can be
obtained from the Help as well as by studying various examples collected in the Demonstrations
project on the Wolfram Website (a reference is avalable in the Help item of the menu).

Some more examples

Enumeration of Chord diagrams
A chord diagram is a collection of 2 n points on the circle split into n pairs (represented by chords).
Two diagrams are isomorphic (or just the same) if they can be obtained from one another by an
orientation-preserving diffeomorphism of the circle.

30 ComputerComputations2015.nb

In[1]:= pt_ : Cos2  , Sin2  ;
Formatdiag___ : Blockn  Length,
GraphicsCircle0, 0, 1,
Thick, TablePointptk  2 n, k, 2 n,
Blue, TableLinept  s2 n , s, , ImageSize  60;

diag1, 2, 3, 4, 5, 6
Out[3]=

In[4]:= smplf_ : TableSortSort   . j_Integer  Modj  k, 2 Length  1,k, 1, 2 Length  Sort  First;
diag1, 3, 2, 5, 4, 6;
dlist0  diag;
dlistn_ : dlistn 
TableAppend . j_Integer ; j  k  j  1, k, 2 n  smplf,k, 1, 2 n  1, , dlistn  1  Flatten  DeleteDuplicates;

dlist4
Length

Out[8]=  , , , , ,

, , , , , ,

, , , , , 
Out[9]= 17

Inversion of a series
x  y  a1 y2  a2 y3 …

ComputerComputations2015.nb 31

In[10]:= Cleara, y;
Blockc, y,
y  x;
Do
y  y  c xk;

y  y . SeriesCoefficienty 
i1

k1
ai yi1  x, x, 0, k  0 

Solve, c &  First ,k, 2, 6;
y

Out[11]= x  x2 a1  x3 2 a12  a2  x4 5 a13  5 a1 a2  a3  x5 14 a14  21 a12 a2  3 a22  6 a1 a3  a4 
x6 42 a15  84 a13 a2  28 a1 a22  28 a12 a3  7 a2 a3  7 a1 a4  a5

y  x a1 y2  a2 y3 …

In[12]:= Y  Nest x 
i1

5
ai i1 &, Ox, 6  ExpandAll

Y  FixedPointExpandAllx 
i1

6
ai i1  Ox7 &, 0

Y  InverseSeriesy 
i1

5
ai yi1  Oy7, x

Out[12]= x  a1 x2  2 a12  a2 x3  5 a13  5 a1 a2  a3 x4  14 a14  21 a12 a2  3 a22  6 a1 a3  a4 x5 42 a15  84 a13 a2  28 a1 a22  28 a12 a3  7 a2 a3  7 a1 a4  a5 x6  Ox7
Out[13]= Ox7
Out[14]= Ox7

32 ComputerComputations2015.nb

