Тема 3. Задачи евклидовой и других геометрий, решаемые средствами проективной геометрии

1. Группа подобий евклидова пространства как подгруппа проективной группы.

Как и ранее, мы работаем в $\mathbf{k} = \mathbb{R}$ или \mathbb{C} .

Определение. Рассмотрим пространство \mathbb{R}^{n+1} какподмножество в \mathbb{C}^{n+1} (и даже как подпространство в \mathbb{C}^{n+1} , рассматриваемом как вещественное пространство), и пусть $(x_0, ..., x_n)$ – координаты в стандартном базисе в \mathbb{R}^{n+1} (соответственно, в \mathbb{C}^{n+1}). Тогда для проективных пространств $\mathbb{RP}^n = \mathbb{P}(\mathbb{R}^{n+1})$ и $\mathbb{CP}^n = \mathbb{P}(\mathbb{C}^{n+1})$ также имеем вложение (как вещественнных многообразий)

$$\mathbb{RP}^n \hookrightarrow \mathbb{CP}^n.$$

Замечание. В бескоординатной форме вложение $\mathbb{RP}^n \hookrightarrow \mathbb{CP}^n$ задается следующим образом. Пусть V – вещественное (n+1)-мерное векторное пространство. Его комплексификацию $V^{\mathbb{C}}$ можно определить как пространство $V \oplus V$ со структурой умножения на мнимую единицу i (а тем самым, и на все комплексные числа по \mathbb{R} -линейности) по формуле: i(x,y) := (-y,x). Вложим V в $V^{\mathbb{C}}$ по формуле: $V \hookrightarrow V^{\mathbb{C}}$, $x \mapsto (x,0)$ и определим на $V^{\mathbb{C}}$ инволюцию комплексного сопряжения $\sigma: V^{\mathbb{C}} \to V^{\mathbb{C}}$, $(x,y) \mapsto (x,-y)$. Тогда $V - \sigma$ -инвариантное подмножество в $V^{\mathbb{C}}$. Другой бескоординатный способ определения пространства $V^{\mathbb{C}}$ и инволюции σ : $V^{\mathbb{C}} := V \otimes_{\mathbb{R}} \mathbb{C}$, $\sigma: V^{\mathbb{C}} \to V^{\mathbb{C}}$, $x \otimes z \mapsto x \otimes \overline{z}$; При этом биекция f между первым и вторым определением $V^{\mathbb{C}}$ задается формулами: $f(x,y) = x \otimes 1 + y \otimes i$, $f^{-1}(x \otimes (a+ib)) = (ax,bx)$.

Далее, вложение $V \hookrightarrow V^{\mathbb{C}}$ индуцирует корректно определенное вложение проективных пространств как множеств (а точнее, как вещественных многообразий)

(2)
$$\phi: \mathbb{RP}^n = P(V) \hookrightarrow P(V^{\mathbb{C}}) = \mathbb{CP}^n, \langle x \rangle_{\mathbb{R}} \mapsto \langle (x, 0) \rangle_{\mathbb{C}}.$$

По построению вложение ϕ в (2) совпадает с вложением (1) при согласованных между собой отождествлениях V с \mathbb{R}^{n+1} и $V^{\mathbb{C}}$ с \mathbb{C}^{n+1} . Кроме того, инволюция σ на $V^{\mathbb{C}}$ индуцирует инволюцию σ на $P(V^{\mathbb{C}})$ по формуле:

$$\underline{\sigma}: P(V^{\mathbb{C}}) \to P(V^{\mathbb{C}}), < v >_{\mathbb{C}} \mapsto < \sigma(v) >_{\mathbb{C}}.$$

(Инволюция $\underline{\sigma}$ корректно определена в силу легко проверяемого равенства $\sigma(zv) = \overline{z}\sigma(v), \ z \in \mathbb{C}, \ v \in V^{\mathbb{C}}$.) Проверим, что $\underline{\sigma}$ -инвариантное подмногообразие в $P(V^{\mathbb{C}})$ есть P(V). Действительно, пусть $< v>_{\mathbb{C}} = < \sigma(v)>_{\mathbb{C}}$ для $0 \neq v = (x,y) \in V^{\mathbb{C}}$. Это означает, что существуют числа $0 \neq z = a_1 + ia_2 \in \mathbb{C}$ и $0 \neq w = b_1 + ib_2 \in \mathbb{C}$ такие, что $zv = w\sigma(v)$. Раскрывая это равенство, получим следующие соотношения

(3)
$$(a_1 - b_1)x = (a_2 + b_2)y, \quad (b_2 - a_2)x = (a_1 + b_1)y.$$

Если $a_1+b_1=a_2+b_2=0$, то из (3) находим $a_1x=a_2x=0$. Если при этом $x\neq 0$, то из последних четырех равенств получаем z=w=0 вопреки предположению. Следовательно, x=0, откуда v=(0,y)=-i(y,0), а значит, $< v>_{\mathbb{C}}=\phi(< y>_{\mathbb{R}})\in \phi(P(V))$. Если хотя бы одно из чисел a_1+b_1 и a_2+b_2 , отлично от нуля, например $a_1+b_1\neq 0$, то из (3) находим y=cx, где $c=(b_2-a_2)/(a_1+b_1)$, откуда v=(x,y)=(x,cx)=(1+ci)(x,0). Тем самым, снова получаем $< v>_{\mathbb{C}}=\phi(< x>_{\mathbb{R}})\in \phi(P(V))$, что и требовалось.

В пространствах \mathbb{RP}^n и \mathbb{CP}^n имеем естественные проективные координаты $[x_0:...:x_n]$ (комплексные в \mathbb{CP}^n и вещественные в \mathbb{RP}^n соответственно). В частности, если в \mathbb{P}^n взять гиперплоскость

(4)
$$\mathbb{CP}_{\infty}^{n-1} = \{x_0 = 0\}$$

(и объявить ее бесконечно удаленной гиперплоскостью), то

$$\mathbb{CP}^{n-1}\cap\mathbb{RP}^n=:\mathbb{RP}^{n-1}_\infty$$

– гиперплоскость в \mathbb{RP}^n , задаваемая тем же уравнением $\{x_0=0\}$:

(5)
$$\mathbb{RP}_{\infty}^{n-1} = \{x_0 = 0\}.$$

Заметим, что по определению $[x_1:...:x_n]$ – однородные проективные координаты в $\mathbb{CP}_{\infty}^{n-1}$ и $\mathbb{RP}_{\infty}^{n-1}$ соответственно. В этих координатах рассмотрим в $\mathbb{CP}_{\infty}^{n-1}$ гиперквадрику

(6)
$$Q_{\infty} = \{ x \in \mathbb{CP}_{\infty}^{n-1} \mid x_1^2 + \dots + x_n^2 = 0 \}$$

и назовем ее **абсолютом (евклидовой геометрии)**. Заметим, что уравнение $x_1^2 + ... + x_n^2 = 0$ не имеет ненулевых вещественных решений, т.е.

$$(7) Q_{\infty} \cap \mathbb{RP}_{\infty}^{n-1} = \emptyset.$$

Далее, дополнения к $\mathbb{CP}_{\infty}^{n-1}$ в \mathbb{CP}^n и, соответственно, к $\mathbb{RP}_{\infty}^{n-1}$ в \mathbb{RP}^n суть аффинные пространства

$$\mathbb{A}^n_{\mathbb{C}} = \mathbb{CP}^n \setminus \mathbb{CP}^{n-1}_{\infty}$$

и, соответственно,

$$\mathbb{A}^n_{\mathbb{R}} = \mathbb{RP}^n \setminus \mathbb{RP}^{n-1}_{\infty}$$

с аффинными координатами

(10)
$$(y_1, ..., y_n) = (\frac{x_1}{x_0}, ..., \frac{x_n}{x_0})$$

(комплексными в $\mathbb{A}^n_{\mathbb{C}}$ и вещественными в $\mathbb{A}^n_{\mathbb{R}}$ соответственно).

Для поля $\mathbf{k} = \mathbb{R}$ или \mathbb{C} рассмотрим проективную группу

$$G_{\mathbf{k}} = PGL(n+1, \mathbf{k}) = \{ [A]_{\mathbf{k}} \in M(n+1, \mathbf{k})^* / \mathbf{k}^* \mid \det A \neq 0 \},$$

где $M(n+1,\mathbf{k})^*$ — множество ненулевых квадратных матриц (n+1)-го порядка над \mathbf{k} , а через $[A]_{\mathbf{k}}$ обозначен класс пропорциональности \mathbf{k}^*A матрицы A. Группа $G_{\mathbb{C}}$ действует естественным образом на \mathbb{CP}^n : для произвольной точки $x \in \mathbb{CP}^n$ с координатами $\mathbf{x} = [x_0 : \dots : x_n]$ ее образ под действием элемента $g = [A]_{\mathbb{C}} \in G_{\mathbb{C}}$ есть точка с координатами $g(\mathbf{x})$, где

$$(g(\mathbf{x}))^T = A\mathbf{x}^T.$$

Аналогично, группа $G_{\mathbb{R}}$ действует естественным образом на \mathbb{RP}^n по той же формуле (11).

Как мы знаем (и легко видеть), аффинная группа $\mathrm{Aff}_{n,\mathbf{k}}=\mathrm{Aut}(\mathbb{A}^n_{\mathbf{k}})$ отождествляется с подгруппой группы $G_{\mathbf{k}}$, оставляющей инвариантной бесконечно удаленную гиперплоскость $\mathbf{k}\mathbb{P}_{\infty}^{n-1}$:

(12)
$$\operatorname{Aff}_{n,\mathbf{k}} = \{ g \in G_{\mathbf{k}} \mid g(\mathbf{k}\mathbb{P}_{\infty}^{n-1}) = \mathbf{k}\mathbb{P}_{\infty}^{n-1} \}, \quad \mathbf{k} = \mathbb{R} \text{ or } \mathbb{C}.$$

А именно, в аффинных координатах $\mathbf{y} = (y_1, ..., y_n)$ точки y в $\mathbb{A}^n_{\mathbf{k}}$ (см. (10)) аффинная группа $\mathrm{Aff}_{n,\mathbf{k}}$ действует по правилу: мы рассматриваем элемент $g \in \mathrm{Aff}_{n,\mathbf{k}}$ как расширенную матрицу

(13)
$$g = (A \mid b^T), \quad A \in GL(n, \mathbf{k}), \quad b \in \mathbf{k}^n,$$

и аффинные координаты $g(\mathbf{y})$ образа g(y) точки y находятся по формуле

$$(g(\mathbf{y}))^T = A\mathbf{y}^T + b^T.$$

Вышеуказанный мономорфизм $\mathrm{Aff}_{n,\mathbf{k}} \stackrel{i}{\hookrightarrow} G_{\mathbf{k}}$ (см. (12)) задается при этом так:

(15)
$$i(A \mid b^T) = [\tilde{A}], \quad \tilde{A} = \begin{pmatrix} 1 & \mathbf{0} & 0 \\ \mathbf{0} & A & b^T \end{pmatrix} = (1) \oplus (A \mid b^T).$$

Теперь рассмотрим евклидово пространства $E^n = \mathbb{A}^n_{\mathbb{R}}$, для которого соответствующее векторное пространство есть пространство \mathbb{R}^n со стандартным скалярным произведением

(16)
$$(\mathbf{p}, \mathbf{q}) = p_1 q_1 + ... + p_n q_n, \qquad \mathbf{p} = (p_1, ..., p_n), \mathbf{q} = (q_1, ..., q_n) \in \mathbf{R}^n.$$

Определение. Углом между прямыми l и m в E^n с направляющими векторами \mathbf{p} и \mathbf{q} , \mathbf{p} , $\mathbf{q} \in \mathbf{R}^n$, заданными параметрическими уравнениями

(17)
$$l: x = \mathbf{p}t + x_0, \quad l: y = \mathbf{q}t + y_0, \quad x_0, y_0 \in E^n,$$

назовем, как обычно, угол между векторами **р** и **q**. **Бесконечно удаленной точкой прямой l и в E^n, называется точка x_{\infty}(l) \in \mathbb{RP}^{n-1}_{\infty}, получаемая как**

$$x_{\infty}(l) = \bar{l} \cap \mathbb{RP}_{\infty}^{n-1},$$

где \bar{l} — проективная прямая в \mathbb{RP}^n , получаемая как замыкание прямой l при вложении $E^n=\mathbb{A}^n_{\mathbb{R}}$ в \mathbb{RP}^n .

Замечание. Если прямая l в E^n задана параметрическим уравнением $l: x = \mathbf{p}t + x_0, x_0 \in E^n, \ \mathbf{p} = (p_1, ..., p_n) \in \mathbf{R}^n$, то легко видеть, что

$$(18) x_{\infty}(l) = (p_1 : \dots : p_n)$$

Задача 1. Прямые l и m в E^n перпендикулярны тогда и только тогда, когда точки $x_{\infty}(l)$ и $x_{\infty}(m)$ сопряжены относительно абсолюта Q_{∞} , m. e. когда они гармонически делят пару точек

$${A, B} = \operatorname{Span}(\mathbf{x}_{\infty}(\mathbf{l}), \mathbf{x}_{\infty}(\mathbf{m})) \cap Q_{\infty}.$$

(Здесь ввиду (1) евклидово пространство E^n считается вложенным в комплексное проективное пространство \mathbb{CP}^n , и, соответственно, $\mathrm{Span}(x_\infty(l),x_\infty(m))$ рассматривается как комплексная проективная прямая в пространстве \mathbb{CP}^n .

Указание κ решению. Это прямое следствие (6) и (16)-(18).

Теперь рассмотрим группу подобий G_E пространства E^n как подгруппу аффинной группы $\mathrm{Aff}_{n,\mathbb{R}}$:

(19)
$$G_E = \{ g = (A \mid b^T) \in \operatorname{Aff}_{n,\mathbb{R}} \mid AA^T = \lambda \mathbf{1}_n, \ \lambda \in \mathbb{R}_+ \}.$$

Задача 2. Группа G_E подобий евклидова пространства E^n (как подгруппа Ли группы $PGL(n+1,\mathbf{C})$ как вещественной группы Ли) есть группа вещественных автоморфизмов абсолюта Q_{∞}

(20)
$$G_E = \operatorname{Aut}_{\mathbb{R}}(Q_{\infty}) := PGL(n+1, \mathbf{R}) \cap \operatorname{Aut}_{\mathbb{C}}(Q_{\infty})$$

где $PGL(n+1,\mathbf{R})$ естественно вложена в группу $PGL(n+1,\mathbf{C})$ посредством мономорфизма вещественных групп $\mathcal{I}u$

$$PGL(n+1, \mathbf{R}) \hookrightarrow PGL(n+1, \mathbf{C}), \ [\mathcal{A}]_{\mathbf{R}} \mapsto [\mathcal{A}]_{\mathbf{C}}.$$

Решение. Действительно, всякое проективное преобразование $g \in \operatorname{Aut}_{\mathbb{C}}(Q_{\infty})$ оставляет на месте абсолют Q_{∞} , а значит, и его проективную оболочку $\mathbb{CP}_{\infty}^{n-1}$, т. е. принадлежит аффинной группе $\operatorname{Aff}_{n,\mathbb{C}}$. Поэтому согласно (13) и (14) всякий элемент

$$g \in \mathrm{Aff}_{n,\mathbb{R}} \cap \mathrm{Aut}_{\mathbb{C}}(Q_{\infty})$$

имеет вид

$$g = (A \mid b^T), \quad A \in GL(n, \mathbb{R}), \quad b \in \mathbb{R}^n,$$

где на g наложено условие, что он сохраняет абсолют Q_{∞} . Последнее условие есть условие на матрицу A. Действительно, под действием элемента g форма $F(x) = x_1^2 + ... + x_n^2 = \mathbf{x}\mathbf{x}^T$ преобразуется по правилу $g(F)(x) = (\mathbf{x}A)(\mathbf{x}A)^T = \mathbf{x}AA^T\mathbf{x}^T$. Поэтому уравнение абсолюта $\mathbf{x}\mathbf{x}^T = 0$ остается инвариантным, если $AA^T = \lambda \mathbf{1}_n$ для некоторого $\lambda \in \mathbb{R}_+$, т. е. если $g \in G_E$. \square

Замечание. Задача 2 показывает, что, в соответствии с эрлангенской программой Φ . Клейна, геометрические свойства пространства E_n суть те свойства пространства

 \mathbb{CP}^n , которые инвариантны относительно вещественных проективных преобразований пространства \mathbb{CP}^n , сохраняющих абсолют.

2. Примеры стандартных теорем аффинной и евклидовой геометрии на плоскости, получаемых средствами проективной геометрии.

В этом параграфе мы докажем средствами проективной геометрии следующие теоремы аффинной и, соответственно, евклидовой геометрии: в треугольнике три медианы (соответственно, три высоты) пересекаются в одной точке.

Предварительно введем одно определение. Пусть, как и выше, евклидова плоскость E^2 дополнена до проективной плоскости $\mathbb{P}^2:=\mathbb{RP}^2$ добавлением бесконечно удаленной прямой $l_\infty:=\mathbb{RP}^1_\infty$ с уравнением $x_0=0$. Рассмотрим в $\mathbb{CP}^1_\infty\supset l_\infty$ абсолют Q_∞ с уравнением $x_1^2+x_2^2=0$. Решая над \mathbb{C} это уравнение, находим

$$Q_{\infty} = \{I, J\}, \quad I = [0:1:i], \quad J = [0:1:-i].$$

Определение. $\mathit{Tovku}\ I, J\ \mathit{ha}\ l_{\infty}\ \mathit{hasываются}\$ циклическими точками.

Докажем теперь следующую теорему аффинной геометрии.

Теорема 1. В треугольнике ABC три медианы пересекаются в одной точке.

Доказательство. Пусть A_1 и B_1 – середины сторон BC и AC треугольника ABC соответственно. На l_{∞} рассмотрим точки

$$A_0 = (BC) \cap l_{\infty}, \quad B_0 = (AC) \cap l_{\infty}, \quad C_0 = (AB) \cap l_{\infty}$$

и в треугольнике ABC точку O пересечения медиан (AA_1) и (BB_1) :

$$O = (AA_1) \cap (BB_1).$$

Далее, на прямой l_{∞} рассмотрим точки

$$A_0 = (BC) \cap l_{\infty}, \quad B_0 = (AC) \cap l_{\infty}, \quad C_0 = (AB) \cap l_{\infty}$$

и точки

$$A' = (AA_1) \cap l_{\infty} = (AO) \cap l_{\infty}, \quad B' = (BB_1) \cap l_{\infty} = (BO) \cap l_{\infty}, \quad C' = (CO) \cap l_{\infty}.$$

Имеем три распавшиеся коники

$$C_1 = (OA_1) \cup (BC), \quad C_2 = (OB_1) \cup (AC), \quad C_3 = (OC_1) \cup (AB),$$

проходящие через 4 точки A, B, C и O. Так как из этих точек никакие три не коллинеарны, то коники C_1 , C_2 и C_3 принадлежат одному пучку. Тем самым, три пары точек

$$\{A_0, A'\} = \mathcal{C}_1 \cap l_{\infty}, \quad \{B_0, B'\} = \mathcal{C}_2 \cap l_{\infty}, \quad \{C_0, C'\} = \mathcal{C}_3 \cap l_{\infty}$$

принадлежат одному пучку квадрик на l_{∞} . С другой стороны, так как A_1 – середина отрезка BC, то пара A_1 , A_0 гармонически делит пару B, C. Тем самым, ввиду перспективы с центром A пара A_0 , A' гармонически делит пару B_0 , C_0 . Аналогично пара B_0 , B' гармонически делит пару A_0 , C_0 . Но тогда по замечанию к задаче 19 темы 2 "Коники на проективной плоскости"и пара $_0$, ' гармонически делит пару A_0 , B_0 . А значит, ввиду перспективы с центром C пара C_0 , C_1 , где $C_1 = (AB) \cap (OC)$, гармонически делит пару A, B. Так как $C_0 \in l_{\infty}$, то отсюда следует, что C_1 – середина отрезка AB, т. е. (CO) – медиана треугольника ABC.

Следующие две теоремы относятся к евклидовой геометрии.

Теорема 2. В треугольнике ABC три высоты пересекаются в одной точке (называемой ортоцентром).

Доказательство. Пусть AA_1 и BB_1 – высоты в треугольнике ABC, где $A_1 \in (BC)$, $B_1 \in (AC)$. Рассмотрим точки

$$O = (AA_1) \cap (BB_1), \quad A_0 = (BC) \cap l_{\infty}, \quad B_0 = (AC) \cap l_{\infty}, \quad C_0 = (AB) \cap l_{\infty}$$

и точки

$$A' = (AA_1) \cap l_{\infty} = (AO) \cap l_{\infty}, \quad , \quad B' = (BB_1) \cap l_{\infty} = (BO) \cap l_{\infty}, \quad C' = (CO) \cap l_{\infty}.$$

Имеем три распавшиеся коники

(21)
$$C_1 = (OA_1) \cup (BC), \quad C_2 = (OB_1) \cup (AC), \quad C_3 = (OC_1) \cup (AB),$$

проходящие через 4 точки A, B, C и O, где $C_1 = (CO) \cap (AB)$. Так как из этих точек никакие три не коллинеарны, то коники C_1 , C_2 и C_3 принадлежат одному пучку. Тем самым, три пары точек

$$\{A_0, A'\} = \mathcal{C}_1 \cap l_{\infty}, \quad \{B_0, B'\} = \mathcal{C}_2 \cap l_{\infty}, \quad \{C_0, C'\} = \mathcal{C}_3 \cap l_{\infty}$$

принадлежат одному пучку квадрик на l_{∞} . С другой стороны, так как прямые (AA_1) и (BC) перпендикулярны, то в силу задачи 1 пара A', A_0 сопряжена относительно абсолюта Q_{∞} , т. е. гармонически делит пару циклических точек I, J. По той же причине и пара B', B_0 гармонически делит пару циклических точек I, J. Следовательно, пары точек A', A_0 и B', B_0 принадлежат инволюции с неподвижными точками I, J, то есть принадлежат одному пучку квадрик на l_{∞} с двумя двойными точками I, J. А значит, и пара C', C_0 принадлежит этому же пучку, то есть гармонически делит пару циклических точек I, J. Это согласно задаче 1 означает, что прямая $(CC_1) = (CO)$ перпендикулярна прямой (AB), что и требовалось. \square

Следствие. Любая гипербола, проходящая через вершины треугольника ABC и его ортоцентр, является равнобочной, т. е. ее асимптоты образуют прямой угол.

Доказательство. Действительно, вершины треугольника ABC и его ортоцентр O являются базисными точками пучка коник с тремя распавшимися кониками \mathcal{C}_1 , $\mathcal{C}_2 = (OB_1) \cup (AC)$ и $\mathcal{C}_3 = (OC_1) \cup (AB)$ из (21). Тем самым, любая коника через эти 4 точки принадлежит этому пучку, а значит, пересекает по паре точек X,Y, принадлежащей одному пучку с \mathcal{C} парами точек A',A_0 B',B_0 и C',C_0 . Тем самым, она гармонически делит пару циклических точек I,J. Если X,Y — пара вещественных точек, то значит, коника \mathcal{C} — гипербола, а точки X,Y — следы на l_∞ ее асимптот. Тем самым, асимптоты коники \mathcal{C} взаимно ортогональны. \square

Замечание. Прокомментируем с точки зрения проективной геометрии следующую теорему евклидовой геометрии: в треугольнике ABC три биссектрисы пересекаются в одной точке.

Действительно, пусть a, b, c (соответственно, a', b', c') – три биссектрисы внутренних (соответственно, внешних) углов в треугольнике ABC, проходящие через точки A, B, C соответственно. По построению a перпендикулярна a', b перпендикулярна b', c перпендикулярна c'. Рассмотрим коники $C_a = a \cup a', C_b = b \cup b', C_c = c \cup c'$ и обозначим точки:

$$O = a \cap b$$
, $O_1 = a \cap b'$, $O_2 = a' \cap b$, $O_3 = a' \cap b'$.

По построению O, O_1 , O_2 , O_3 – точки пересечения коник C_a и C_b , то есть базисные точки пучка коник $< C_a, C_b >$. При этом поскольку $(AO) = (AO_1)$ – биссектриса угла $\angle A$, а b' – биссектриса внешнего угла при вершине B, то O_1 – центр вневписанной окружности, лежащей с треугольником ABC по разные стороны от стороны (BC). Аналогично, O_2 – центр вневписанной окружности, лежащей с треугольником ABC по разные стороны от стороны (AC), а O_3 – центр вневписанной окружности, лежащей с треугольником ABC по разные стороны от стороны (AB). Поэтому прямая (O_1O_2) – биссектриса внешнего угла при вершине C, то есть совпадает с прямой c'. При этом биссектриса c проходит через точку O_3 как центр вневписанной окружности.

Таким образом, коника $C_c = c \cup c'$ проходит через базисные точки O, O_1, O_2, O_3 пучка коник $< C_a, C_b >$, а значит, принадлежит этому пучку. При этом тот факт, что C_c есть объединение двух перпендикулярных прямых c и c', является следствием того, что C_a и C_b суть также объединения пар перпендикулярных прямых. Последний факт дословно повторяет аналогичный факт из доказательства теоремы 2.

3. Пример "стандартных" теорем неевклидовой геометрии на плоскости, получаемых средствами проективной геометрии.

В этом параграфе мы докажем средствами проективной геометрии следующие две теоремы неевклидовой геометрии на плоскости (называемой также геометрией Лобачевского):
1) в треугольнике три медианы пересекаются в одной точке, 2) в треугольнике три высоты пересекаются в одной точке.

Для этого мы воспользуемся моделью Кэли-Клейна плоскости Лобачевского П: П есть внутренность единичного круга с границей – окружностью ω , а прямая в П, соединяющая пару точек $A, B \in \Pi$, есть по определению открытый интервал $(AB) \cap \Pi$. Расстояние d(AB) между точками A и B определяется как модуль логарифма двойного отношения (ABXY):

$$d(AB) = |\ln(ABXY)|,$$

где X и Y – точки пересечения окружности ω с прямой (AB).

Движения (изометрии) плоскости Лобачевского П, как лежащей естественным образом в \mathbb{RP}^2 , понимаются как проективные преобразования плоскости \mathbb{RP}^2 , сохраняющие П. Таким образом, группа G_{Π} движений плоскости П совпадает с группой $\mathrm{Aut}(\omega) = \{g = PGL(3,\mathbb{R}) \mid g(\omega) = \omega\}$ проективных автоморфизмов окружности ω .

Замечание 1. а) Нетрудно проверить, что середина P отрезка [AB] на плоскости Лобачевского Π строится следующим образом. B точках X и Y пересечения окружности ω с прямой (AB) проведем касательные κ ω , и пусть O – их точка пересечения. Пусть прямые (OA) и (OB) пересекают окружность ω в точках A_1 , A_2 и B_1 , B_2 соответственно. При этом нумерацию этих точек выберем так, что A_1 и B_1 лежат по одну, а A_2 и B_2 –

по другую сторону от прямой (AB). Тогда

$$P = (A_1 B_2) \cap (B_1 A_2).$$

б) Более того, как следует из задачи 5 семинара 2 ("Коники"), следует, что прямые (A_1B_1) и (A_2B_2) пересекаются в точке Q на прямой (AB), лежащей вне отрезка [XY], такой, что пара точек P,Q гармонически делит две пары точек A,B и X,Y. Согласно следствию κ задаче 17 семинара 2 пара точек P,Q с таким свойством единственна.

Определение. В силу последнего свойства будем также называть точку P ω -серединой отрезка [AB]. Соответственно, прямую (CP) в треугольнике ABC будем называть ω -медианой треугольника ABC.

Замечание 2. В предыдущих обозначениях перпендикуляр к прямой (AB), проходящий через произвольную точку Z плоскости Лобачевского Π есть прямая (OZ). (См. доказательство в задаче 5.)

Для доказательства теоремы о медианах треугольника в плоскости Лобачевского нам потребуется следующая задача.

Задача 3. В плоскости Лобачевского с абсолютом ω дан треугольник ABC. Пусть A' – ω -середина отрезка [BC], а B' – ω -середина отрезка [AC]. Возъмем точку A_1 на прямой (BC) и точку B_1 на прямой (AC) такие, что пара A', A_1 гармонически делит пару B, C, а пара B', B_1 гармонически делит пару A, C. Пусть C_1 – точка пересечения прямых (AB) и (A_1B_1) , и C' – точка отрезка [AB] такая, что пара C', C_1 гармонически делит пару A, B. Тогда пара C', C_1 гармонически делит пару C, C_1 гармонически делит пару C

Решение. Проведем вычисление в аффинной плоскости \mathbb{A}^2 , в которой (A_1B_1) есть бесконечно удаленная прямая, точка A' взята в качестве начала координат O, прямая $(BC) = (OA_1)$ в качестве оси Ox, а прямая (A'C') = (C') в качестве оси Cy. Так как по условию пара C, C1 гармонически делит пару C2, а C3 гармонически делит пару C4, а C5 гармонически делит пару C6, а C7 гармонически C8 гармонически делит пару C9, а C9 гармонически C9 гармонически C9 гармонически делит пару C9 гармонически дел

(22)
$$B = (-1,0), \quad C = (1,0).$$

Аналогично, так как по условию пара C', C_1 гармонически делит пару A, B, а C_1 – бесконечно удаленная точка, то точка C' – середина отрезка [AB]. По той же причине и точка B' – середина отрезка [AC]. Поэтому можно выбрать масштаб на оси Oy так, что отрезки [AB'] и [B'C] будут иметь единичную длину, то есть положить

(23)
$$B' = (1,1), \quad A = (1,2), \quad C' = (0,1).$$

Пусть $\{X,Y\}=(Ox)\cap\omega$, $\{P,Q\}=(Oy)\cap\omega$. Так как по условию пара O,A_1 гармонически делит пару X,Y, пара B',B_1 гармонически делит пару P,Q, а A_1 и B_1 – бесконечно удаленные точки, то найдутся вещественные числа a>1 и b>0, что

(24)
$$X = (-a,0), Y = (a,0), P = (1,b+2), Q = (1,-b).$$

Рассмотрим две коники $C_1 = (PQ) \cup (XY)$ и $C_2 = (QY) \cup (PX)$, принадлежащие пучку с базисными точками X, Y, P, Q. Заметим, что коника ω содержит точки X, Y, P, Q, а значит, принадлежит этому пучку. Далее, пользуясь (22)-(24), находим $C_1 = \{F_1 = 0\}$, $C_2 = \{F_2 = 0\}$, где

(25)
$$F_1 = y(x-1), \quad F_2 = ((1+a)y - (b+2)(x+a))((a-1)(y+b) - b(x-1)).$$

Ограничивая линейную комбинацию $F := \lambda F_1 + F_2$ форм F_1 и F_2 на прямую (AB) с уравнением y = x + 1, находим уравнение пучка квадрик на прямой (AB):

(26)
$$F|_{\{y=x+1\}} = \lambda(x+1)(x-1) + \left((a+1)(x+1) - (b+2)(x+a)\right) \left((a-1)(x+1) - b(x-1) + (a-1)b\right) = x^2(\lambda + (a-b-1)^2) - (\lambda + (a-1+ab)^2),$$

то есть уравнение $x^2 - \tilde{\lambda} = 0$, где $\tilde{\lambda} = (\lambda + (a-1+ab)^2)/(\lambda + (a-b-1)^2)$. Последнее уравнение показывает, что получаемый пучок квадрик определяет на (AB) инволюцию с неподвижными точками C' и C_1 . Напомним, что по построению пара A,B гармонически делит пару C',C_1 . С другой стороны, так как коника ω принадлежит пучку $< C_1,C_2>$, то пара R,S, высекаемая ею на прямой (AB), принадлежит указанной инволюции, а значит, также гармонически делит пару C',C_1 . Это по определению означает, что C' есть ω -середина отрезка [AB].

Задача 3'. Найдите синтетическое решение задачи 3.

Теорема 3. В треугольнике ABC в плоскости Лобачевского три ω -медианы пересекаются в одной точке.

Решение. Пусть в треугольнике ABC точки A' и B' – ω-середины сторон BC и AC соответственно, и O – точка пересечения ω-медиан AA' и BB'. Рассмотрим пучок коник L с базисными точками O, A, B, C. В этом пучке имеются три распавшиеся коники

$$C_a = (BC) \cup (AA'), \quad C_b = (AC) \cup (BB'), \quad C_c = (AB) \cup (CO).$$

Как и в условиях задачи 3, возьмем точку A_1 на прямой (BC) и точку B_1 на прямой (AC) такие, что пара A', A_1 гармонически делит пару B, C, а пара B', B_1 гармонически делит пару A, C. Пусть C_1 — точка пересечения прямых (AB) и (A_1B_1) . Определим теперь на прямой (A_1B_1) еще три точки A'', B'', C'' из условий:

$$\{A'', A_1\} = \mathcal{C}_a \cap (A_1B_1), \quad \{B'', B_1\} = \mathcal{C}_b \cap (A_1B_1), \quad \{C'', C_1\} = \mathcal{C}_c \cap (A_1B_1).$$

Проекция из центра O и гармоничность вышеуказанных пар точек показывает, что

$$(A''A_1, B_1C_1) = (A'A_1, BC) = -1, \quad (B''B_1, A_1C_1) = (B'B_1, AC) = -1,$$

то есть пара $A''A_1$ гармонически делит пару B_1C_1 , а пара $B''B_1$ гармонически делит пару A_1C_1 . Так как коники C_a , C_b , C_c принадлежат одному пучку, то отсюда и из задачи 19(2) семинара 2 ("Коники") следует, что и пара $C''C_1$ гармонически делит пару A_1B_1 . Поэтому снова проекция из центра O показывает, что пара C', C_1 , где

$$C' = (CO) \cap (AB).$$

гармонически делит пару A,B. Но тогда согласно задаче 3 точка C' – ω -середина отрезка [AB], то есть прямая (CC') = (CO) – ω -медиана.

Задача 4 (Теорема Плюккера о полярно сопряженных треугольниках). Если вершины одного треугольника являются полюсами соответственных сторон другого относительно некоторого конического сечения, то такие треугольники перспективны.

Решение. Рассмотрим коническое сечение. Пусть каждая вершина треугольника $A_1B_1C_1$ является полюсом соответственной стороны треугольника ABC (см. рис. ниже). Докажем, что прямые AA_1 , BB_1 , CC_1 пересекаются в одной точке O. Если фиксировать вершины A_1 и B_1 , а C_1 перемещать по прямой B_1C_1 , то поляра AB этой вершины опишет пучок (A) с центром A, высекая на BC прямолинейный ряд (BC) точек, проективный прямолинейному ряду (B_1C_1) , который пробегает C_1 . Пучки прямых (B_1) и (C), соответственно перспективные проективным прямолинейным рядам (BC) и (B_1C_1) , проективны. Кроме того, общая

прямая CB_1 этих пучков сама себе соответствует. Поэтому пучки (B_1) и (C) перспективны. Прямая AA_1 является осью перспективы, так как прямая CA пучка (C) соответствует прямой B_1A пучка (B_1) , а прямая CA_1 – прямой B_1A_1 . В самом деле, полярой точки $M = CA \cap B_1C_1$ является прямая AB_1 , а поэтому в установленном с помощью пучка (A) проективном соответствии рядов (BC) и (B_1C_1) точке M ряда (B_1C_1) соответствует точка $K = BC \cap AB_1$, а значит, прямой CM = CA пучка (C) соответствует прямая $B_1K = B_1A$ пучка (B_1) . Соответствие прямых CA_1 и B_1A_1 в этих пучках доказывается аналогично. Поскольку прямые CC_1 и B_1B являются соответственными в перспективных пучках, то они пересекаются на оси перспективы AA_1 .

(Это решение взято из книги З.А.Скопеца и Я.П.Понарина "Геометрия тетраэдра", Ярославль, ЯГПИ, 1974.) \Box

Другое решение. Оно основано на следующем утверждении:

(*) Если две пары противоположных вершин полного четырехсторонника сопряжены относительно коники C, то и третья пара его противоположных вершин сопряжена относительно C.

Доказательство (*). Пусть A, A', B, B', C, C' – три пары противоположных вершин полного четырехсторонника (см. рис.):

Возьмем A, B, C в качестве точек $E_0 = (1:0:0), E_1 = (0:1:0), E_2 = (0:0:1)$ проективного репера, а прямую A'B'C' в качестве единичной прямой $x_0 + x_1 + x_2 = 0$, так что A' = (0:1:-1), B' = (1:0:-1), C' = (1:-1:0). Подставляя координаты этих точек в уравнение коники $\sum a_{ik}x_ix_k = 0$, получаем, что условия сопряженности точек A и A', B и B', C и C' имеют вид соответственно: $a_{01} = a_{02}, \ a_{01} = a_{12}, \ a_{02} = a_{12}$. Любые два из этих равенств влекут третье, откуда вытекает утверждение (*).

Теперь перейдем к решению задачи 4. Пусть ABC – данный треугольник, и пусть A'B'C' – полярный ему треугольник относительно коники. Пусть (BC) и (B'C') пересекаются в точке P, а (BB') и (CC') – в точке O (см. рис).

Так как по условию пары точек B и C, B' и C сопряжены относительно коники, то и пара O и P сопряжена относительно коники. Поэтому поляра (AA') точки P содержит точку O, что и требовалось доказать.

Задача 5. В треугольнике ABC в плоскости Лобачевского высота h_C через точку C строится как прямая $h_C = (CC')$, где C' – полюс прямой (AB) относительно ω . Тем самым, прямая h_C сопряжена прямой (AB) относительно окружности ω .

Указание к решению. Это следствие формулы для угла между прямыми l=(AB) и $m=(CC_1)$, где $C_1=(CC')\cap (AB)$ в плоскости Лобачевского:

$$\widehat{l,m} = \frac{1}{2i} \ln(lm, n_1 n_2),$$

где n_1 и n_2 – (мнимые) касательные прямые к ω , проходящие через точку C_1 . Действительно, так как l и m сопряжены относительно ω , двойное отношение (lm, n_1n_2) равно -1, и поэтому вышеуказанная формула дает $\widehat{l,m} = \frac{1}{2i} \ln(-1) = \frac{\pi}{2}$.

Теорема 4 Tри высоты в треугольнике на плоскости Лобачевского пересекаются в точке.

Решение. Пусть ABC – треугольник и A', B' и C' – полюсы прямых (BC), (AC) и (AB) соответственно относительно ω . Согласно задаче 5 прямые $h_A = (AA')$, $h_B = (BB')$ и $h_C = (CC')$ являются высотами в треугольнике ABC. Но по построению треугольники ABC и A'B'C' полярно сопряжены относительно ω , а значит, перспективны ввиду теоремы Плюккера (задача 4), то есть высоты h_A , h_B и h_C пересекаются в точке.