2015-09-14 Problems

Introduction to Number Theory

1. Let $x, y \in \mathbb{Z}$ and $m \in \mathbb{N}$. We say that x and y are congruent modulo m, if the diffference $x-y$ is divisible by m. We write

$$
x \equiv y(\bmod m)
$$

Note that $x \equiv y(\bmod m)$ if and only if $x-y \in m \mathbb{Z}$. Show that the relation " $x \equiv y(\bmod m)$ ", gives an equivalence relation, say \sim_{m}, on \mathbb{Z}. That is, show that

- $a \sim_{m} a$,
- $a \sim_{m} b$ implies $b \sim_{m} a$, and
- $a \sim_{m} b$ and $b \sim_{m} c$ imply $a \sim_{m} c$.

2. Prove the following properties:
2.1. $a \equiv a^{\prime}(\bmod m) \Rightarrow a+c \equiv a^{\prime}+c(\bmod m)$ for any $c \in \mathbb{Z}$.
2.2. $a \equiv a^{\prime}(\bmod m) \Rightarrow a c \equiv a^{\prime} c(\bmod m)$
2.3. $a \equiv a^{\prime}, b \equiv b^{\prime}(\bmod m) \Rightarrow a b \equiv a^{\prime} b^{\prime}, a+b \equiv a^{\prime}+b^{\prime}(\bmod m)$.
2.4. Give a counter-example to $a \equiv a^{\prime}(\bmod m) \Rightarrow a / c \equiv a^{\prime} / c(\bmod m)$.
2.5. Show that $a \equiv a^{\prime}\left(\bmod m_{1}\right)$ and $a \equiv a^{\prime}\left(\bmod m_{2}\right) \Rightarrow a \equiv a^{\prime}\left(\bmod l c m\left(m_{1}, m_{2}\right)\right)$.
2.5.1. Give a counter-example to $a \equiv a^{\prime}\left(\bmod m_{1}\right)$ and $a \equiv a^{\prime}\left(\bmod m_{2}\right) \Rightarrow a \equiv a^{\prime}\left(\bmod m_{1} m_{2}\right)$.
2.6. Show that $a c \equiv a^{\prime} c(\bmod m) \Rightarrow a \equiv a^{\prime}(\bmod m / \operatorname{gcd}(m, c))$.
2.6.1. Give a counter-example to $a c \equiv a^{\prime} c(\bmod m) \Rightarrow a \equiv a^{\prime}(\bmod m)$.
3. The set of equivalence classes in the problem above will be denoted $\mathbb{Z} / m \mathbb{Z}$. We write \bar{a} or \bar{a}_{m} for the element in $\mathbb{Z} / m \mathbb{Z}$ represented by the element $a \in \mathbb{Z}$.
Show that there is a 'natural' structure of ring on $\mathbb{Z} / m \mathbb{Z}$.
4.1. Let R be a (commutative unital) ring. An element $r \in R$ is said to be invertible if there exists an element $u \in R$ such that $r u=1$. Show that the set of invertible elements R^{\times}form an abelian group under multiplication of R.
4.2. Deleted due to an error.
5.1 Show that an element $c \in \mathbb{Z} / m \mathbb{Z}$ is invertible (i.e., there exists an element d such that $c d \equiv 1(m))$ if and only if $\operatorname{gcd}(c, m)=1$.
The set of invertible elements is denoted $(\mathbb{Z} / m \mathbb{Z})^{\times}$.
5.2. List the invertible elements in $\mathbb{Z} / 5 \mathbb{Z}, \mathbb{Z} / 25 \mathbb{Z}$, and $\mathbb{Z} / 125 \mathbb{Z}$. What is the cardinality of $(\mathbb{Z} / 5 \mathbb{Z})^{\times}$, $(\mathbb{Z} / 25 \mathbb{Z})^{\times}$, and $(\mathbb{Z} / 125 \mathbb{Z})^{\times}$respectively?
6.1. (Euler's function) Let $\varphi(n)$ denote the cardinality of $(\mathbb{Z} / n \mathbb{Z})^{\times}$. (We set $\varphi(1)=1$.)
6.2. Find all integers n such that $\varphi(n)=2,3,4,5,6,7$.
6.3. Show that $\sum_{d \mid n} \varphi(d)=n$.
6.4. Let $n \in \mathbb{N}$. For $a \in \mathbb{Z}$ such that $\operatorname{gcd}(a, n)=1$, set f to be the smallest positive integer such that $a^{f} \equiv 1(\bmod n)$. Show that $f \mid \varphi(n)$.
4. Let $m, n \in \mathbb{N}$. Determine the kernel of the ring homomorphism $\phi: \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$, that sends $1 \in \mathbb{Z}$ to $(\overline{1}, \overline{1})$.
8.1. Show that $10^{2 n+1}+1$ is divisible by 11 .
8.2 Show that $7^{20}-1$ is divisible by 25 .
5. Show that n is prime if and only if $\mathbb{Z} / n \mathbb{Z}$ is a field.
10.1. (Wilson's theorem) Show that if p is prime, then $(p-1)!\equiv-1(\bmod p)$. Hint: Note that $(\mathbb{Z} / p \mathbb{Z})^{\times}=\{\overline{1}, \ldots, \overline{p-1}\}$ is a group so there exists a unique inverse to each of the elements.
10.2. Show that the converse holds. (That is, if $(p-1)!\equiv-1(\bmod p)$, then p is prime.)
6. Let p be prime. Recall that a generator of the cyclic group $(\mathbb{Z} / p \mathbb{Z})^{\times}$is called a primitive root modulo p. Give an example of a primitive root modulo p for $p=3,5,7,11,13,17$.
12.1. Show that $2^{1093}-2$ is divisible by 1093^{2}. (may use a calculator)
12.2. Show that $2^{3511}-2$ is divisible by 3511^{2}. (may use a calculator)
7. Let p be an odd prime. Let $e \in \mathbb{N}$. Show $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}$is a cyclic group. Hint: Show that $\overline{p+1} \in\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}$is of order p^{e-1}. Show $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times} \cong \mathbb{Z} /(p-1) \mathbb{Z} \times \mathbb{Z} / p^{e} \mathbb{Z}$. Use $(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic.
14.1. Let p be an odd prime. Show that the order f of $\overline{10} \in \mathbb{Z} / p \mathbb{Z}$ is a divisor of $p-1$. Show that the decimal expansion of $\frac{1}{p}$ is a repeating decimal of period f.
14.2. Verify the claim directly when $p=7,11$, or 13 .
15.1. Suppose p and $q:=2 p+1$ are primes and $p \equiv 1(\bmod 4)$. Show that 2 is a primitive root modulo q.
15.2. Suppose p and $q:=4 p+1$ are odd primes. Show that 2 is a primitive root modulo q.
8. Show that there exist infinitely many primes p such that $p \equiv 1(\bmod 4)$.

Milnor's K-groups

Let k be a field. For $n \in \mathbb{N}$, we define the n-th Milnor K-group of k to be

$$
K_{n}^{M}(k)=\left(k^{\times} \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} k^{\times}\right) / I_{n}
$$

where I_{n} is the subgroup generated by elements of the form $a_{1} \otimes \cdots \otimes a_{n}$ with $a_{i}+a_{j}=1$ for some $i \neq j$. The element of $K_{n}^{M}(k)$ represented by the element $a_{1} \otimes \cdots \otimes a_{n} \in k^{\times} \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} k^{\times}$is written $\left\{a_{1}, \ldots, a_{n}\right\}$. We set $K_{0}^{M}(k)=\mathbb{Z}$. For $n=1$, we have $K_{1}^{M}(k)=k^{\times}$

MK1. Show that $\left\{a_{1}, \ldots, a_{d}\right\}=0$ if $a_{i}+a_{j}=0$ for some $i \neq j$.
MK2. Show $\left\{\ldots, a_{i}, \ldots, a_{j}, \ldots\right\}=-\left\{\ldots, a_{j}, \ldots, a_{i}, \ldots\right\}$ (exchange the i-th and the j-th entries).
MK3. If $a+b \neq 0$, show $\{a, b\}=\left\{a+b,-a^{-1} b\right\}$.
MK4. Show $\left\{a_{1}, \ldots, a_{n}\right\}=0$ if $a_{1}+\cdots+a_{n}=0$ or if $a_{1}+\cdots+a_{n}=1$.
MK5.1. Show that $K_{2}^{M}(\mathbb{Z} / 5 \mathbb{Z})=0$.
MK5.2. Let p be a prime number. Let k be a finite field of p elements. Show that $K_{n}^{M}(k)=0$ for $n \geq 2$.
MK5.3. Show that $K_{n}^{M}(k)=0$ for $n \geq 2$ holds for any finite field k.

