2015-11-02 Introduction to number theory Problems

Some goals: $2.7,2.9,3.10,4.8,5,6.2$.

1. Set $A=\mathbb{Z}$. Note that A is a UFD (as proved in the first lecture).
1.1. Show that the set of units of A is $\{ \pm 1\}$.
1.2. Show that a prime number $p \in \mathbb{Z}$ is a prime element.
1.3. Show that if $\alpha \in \mathbb{Z}$ is a prime element, then $\alpha= \pm p$ for some prime number p.
2. Set $A=\mathbb{Z}[\sqrt{-2}]$. We may use below that A is a UFD. For $\alpha=x+y \sqrt{-2}$, write $\bar{\alpha}=x-y \sqrt{-2}$.
2.1. Determine the units in A.
2.2. Show that

$$
\left(\frac{-2}{p}\right)= \begin{cases}1 & \text { if } p \equiv 1,3(\bmod 8), \\ -1 & \text { if } p \equiv 5,7(\bmod 8) .\end{cases}
$$

2.3. Let $p \in \mathbb{Z}$ be prime such that $p \equiv 5$ or $7(\bmod 8)$. Show that $p \in A$ is prime.
2.4.1. Let $p \in \mathbb{Z}$ be prime such that $p \equiv 1$ or $3(\bmod 8)$. Show that $p=\alpha \bar{\alpha}$ for some prime $\alpha \in A$.
2.4.2. Show that $\alpha A \neq \bar{\alpha} A$.
2.5. Note that $2=-(\sqrt{-2})^{2}$. Show that $\sqrt{-2} \in A$ is prime.
2.6. Let $\alpha \in A$ be prime. Show that α is equal to βu where β is one of the primes above and u is a unit.
2.7. Show that the set of solutions in \mathbb{N} of the equation $y^{2}=x^{3}-2$ is $\{(3,5)\}$.
2.8. Let p be a prime number in \mathbb{Z} such that $p \equiv 5$ or $7(\bmod 8)$. Show that the equation $p=x^{2}+2 y^{2}$ has no solution in \mathbb{Q}. (Suggestion: Consider the equation $p z^{2}-2 w^{2}=1$, compute the Hilbert symbols $a_{v}=(p,-2)_{v}$, then use the theorem that if $a_{v} \neq 1$ for some v then there exists no solution in \mathbb{Q}_{v} (hence in \mathbb{Z}).)
2.9. Let p be an odd prime number. Show that a prime number $p \in \mathbb{Z}$ can be expressed in the form $x^{2}+2 y^{2}$ with $x, y \in \mathbb{Z}$ if and only if $p \equiv 1$ or $3(\bmod 8)$. (Suggestion: use 2.4.1 and 2.7)
3. Set $A=\mathbb{Z}\left[\zeta_{3}\right]$ where $\zeta_{3}=\frac{-1+\sqrt{-3}}{2}$. We may use below that A is a UFD. For $\alpha=x+y \zeta_{3}$ with $x, y \in \mathbb{Z}$, write $\bar{\alpha}=x+y \overline{\zeta_{3}}$ where $\overline{\zeta_{3}}=\frac{-1-\sqrt{-3}}{2}$.
3.1. Show that the set of units in A is $\left\{ \pm 1, \pm \zeta_{3}, \pm \zeta_{3}^{2}\right\}$.
3.2. Show that

$$
\left(\frac{-3}{p}\right)= \begin{cases}1 & \text { if } p \equiv 1(\bmod 3), \\ -1 & \text { if } p \equiv 2(\bmod 3) .\end{cases}
$$

3.3. Let $p \in \mathbb{Z}$ be prime such that $p \equiv 2(\bmod 3)$. Show that $p \in A$ is prime.
3.4. Let $p \in \mathbb{Z}$ be prime such that $p \equiv 1(\bmod 3)$. Show that $p=\alpha \bar{\alpha}$ for some prime $\alpha \in A$.
3.5. Note that $3=-(\sqrt{-3})^{2}$. Show that $\sqrt{-3}$ is prime.
3.6. Let $\alpha \in A$ be prime. Show that α is equal to βu where β is one of the primes above and u is a unit.
3.7. Let $\beta \in A$. Show that there exists $i=0,1,2$ such that $\zeta_{3}^{i} \beta \in \mathbb{Z}[\sqrt{-3}]$.
3.8. Let $p \in \mathbb{Z}$ be a prime number. Show that if $p \equiv 2(\bmod 3)$, then the equation $p=x^{2}+3 y^{2}$ has no solution in \mathbb{Q}.
3.9. (deleted)
3.10. Let $p \in \mathbb{Z}$ be a prime number. Show that $p \in \mathbb{Z}$ can be expressed in the form $x^{2}+3 y^{2}$ with $x, y \in \mathbb{Z}$ if and only if $p \equiv 1(\bmod 3)$. (Suggestion: use 3.4,3.7,3.9)
4. Set $A=\mathbb{Z}[\sqrt{2}]$. For $\alpha=x+y \sqrt{2} \in A$ with $x, y \in \mathbb{Z}$, write $\bar{\alpha}=x-y \sqrt{2}$. We may use below that A is a UFD.
4.1. Find 10 units in $\mathbb{Z}[\sqrt{2}]$.
4.2. Show that

$$
\left(\frac{2}{p}\right)= \begin{cases}1 & \text { if } p \equiv 1,7(\bmod 8) \\ -1 & \text { if } p \equiv 3,5(\bmod 8) .\end{cases}
$$

4.3. Let $p \in \mathbb{Z}$ be prime such that $p \equiv 3$ or $5(\bmod 8)$. Show that $p \in A$ is prime.
4.4.1. Let $\alpha \in A$ be an element such that $\alpha \bar{\alpha}=-p$. Let $\gamma=(1-\sqrt{2}) \alpha$. Show that $\gamma \bar{\gamma}=p$.
4.4.2. Let $p \in \mathbb{Z}$ be prime such that $p \equiv 1$ or $7(\bmod 8)$. Show that $p=\alpha \bar{\alpha}$ for some prime $\alpha \in A$.
4.4.3. Show that $\alpha A \neq \bar{\alpha} A$.
4.5. Note that $2=(\sqrt{2})^{2}$. Show that $\sqrt{2} \in A$ is prime.
4.6. Let $\alpha \in A$ be prime. Show that α is equal to βu where β is one of the primes above and u is a unit.
4.7. Let $p \in \mathbb{Z}$ be prime such that $p \equiv 3$ or $5(\bmod 8)$. Show that the equation $p=x^{2}-2 y^{2}$ has no solution in \mathbb{Q}.
4.8. Let p be a prime number. Show that there exist $x, y \in \mathbb{Z}$ such that $p=x^{2}-2 y^{2}$ if and only if $p \equiv 1$ or $7(\bmod 8)$.
5. You may use below that $A=\mathbb{Z}[i]$ is a UFD. Show that the set of solutions in \mathbb{N} of the equation $y^{2}=x^{3}-4$ is $\{(2,2),(5,11)\}$.
6. You may use below the fact that $\mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right]$ is a unique factorization domain.
6.1. Determine the units in $\mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right]$.
6.2. Show that the set of solutions in \mathbb{Z} of the equation $y^{2}=x^{3}-11$ is $\{(3, \pm 4),(15, \pm 58)\}$.
7. Let A be a UFD. Let $\alpha_{1}, \ldots, \alpha_{r}, \beta \in A$ be nonzero elements. Suppose $\alpha_{1} \cdots \alpha_{r}=\beta^{k}$ for some $k \in N N$. Suppose α_{i} and α_{j} are not divisible by the same prime element for $i \neq j$. (This means that there does not exist a prime element $\gamma \in A$ such that $\alpha_{i} A \supset \gamma A$ and $\alpha_{j} A \supset \gamma A$.) Prove that, for each $1 \leq i \leq r$, there exists a unit u_{i} and an element δ_{i} such that $\alpha_{i}=u_{i} \delta_{i}^{k}$.

