
2015-11-09 Introduction to number theory Problems

1. Let m ∈ Z be a square free integer (i.e., not divisible by a square other than 1). Suppose
m 6= ±1. Let K = Q(

√
m). Recall that the ring of integers OK of a number field K is the set

(which becomes a ring) of elements a of K such that a is a root of a monic polynomial with
coefficients in Z.
1.1. Suppose m ≡ 2 (mod 4). Show that OK = Z[

√
m] = {a+ b

√
m | a, b ∈ Z}.

1.2. Suppose m ≡ 3 (mod 4). Show that OK = Z[
√
m] = {a+ b

√
m | a, b ∈ Z}.

1.3. Suppose m ≡ 1 (mod 4). Show that OK = Z[1+
√
m

2
] = {a+ b(1+

√
m

2
) | a, b ∈ Z}.

2. Let K = Q(
√
−26). From 1.1 above, it follows that OK = Z[

√
−26]. Let us show that OK is

not a unique factorization domain.
2.1.1. Show that 1 +

√
−26 and 1−

√
−26 are not units.

2.1.2. Recall that a nonzero element α ∈ A, which is not a unit, is a prime element if ab ∈ αA
implies a ∈ αA or b ∈ αA. Use 33 = (1 +

√
−26)(1−

√
−26) to conclude that 3 is not a prime

element.
2.2. We show that there does not exist a prime element which divides 3.
2.2.1. Suppose there exists a prime element α that divides 3. Show, using that 3 is not a prime
element, that 3 = αα. (See the exercises from 2015-11-02.)
2.2.2. Set α = x+y

√
−26. From 2.2.1, we obtain 3 = x2+26y2. Show that there are no solutions

in Z and conclude that OK is not a unique factorization domain.
2.3. Consider ideals a = (3, 1 +

√
−26) and b = (3, 1−

√
−26).

2.3.1. Show that a is not a principal ideal.
2.3.2. Show that b is not a principal ideal.
2.3.3. Show that a is a prime ideal.
2.3.4. Show that b is a prime ideal.
2.3.5. Recall that the product IJ of two ideals I and J is

IJ =

{
n∑

k=1

xkyk

∣∣∣∣∣ n ∈ N, xk ∈ I, yk ∈ J

}
.

Show that (3) = ab.
2.3.6. Show that (1 +

√
−26) = a3.

2.3.7. Show that (1−
√
−26) = b3.

Remark: Hence we can understand the equation 33 = (1 +
√
−26)(1−

√
−26) using ideals in the

following way: (33) = a3b3 = ((1 +
√
−26)(1−

√
−26)).

3.
3.1. Let A be a domain. Let α ∈ A be a nonzero element. Prove that α is a prime element if
and only if αA is a prime ideal.
3.2. Show that the set of prime ideals of Z is {(p) | p a prime number} ∪ {(0)}.
3.3. Let K be a number field. Let a and b be two fractional ideals (in the Dedekind domain
OK). Show that their product ab is also a fractional ideal. (The product of fractional ideals is
defined using the same expression for the product of ideals.) (see above)
3.4. Set a−1 = {x ∈ K |xa ∈ OK}. Show that aa−1 = OK .
3.5. Show that if a is a principal fractional ideal, that is, a = aOK ⊂ K for some a ∈ K×, then
a−1 = 1

a
OK .

3.6. Let K = Q(
√
−26) and a = (3, 1 +

√
−26) ⊂ OK be an ideal. Find x, y ∈ K such that

a−1 = xOK + yOK .



4.
4.1.1 Show that the unit group of Q(

√
−1) is cyclic of order 4.

4.1.2. Show that the unit group of Q(
√
−3) is cyclic of order 6.

4.1.3. Show that the unit group of a quadratic imaginary field Q(
√
m), where m is a negative

square free integer such that m 6= −1,−3, is of order 2.
4.2.1. Show that the set of roots of unity contained in a real quadratic field is {±1}.
4.2.2. Let B be a subgroup of Z⊕Z/2Z, whose cardinality is infinite. Suppose there is a nonzero
element b ∈ B such that 2b = 0. Show that B ∼= Z⊕ Z/2Z.
4.2.3. Let N 6= 1 be a positive square free integer. Let u = x+ y

√
N ∈ Z[

√
N ]× be an invertible

element (here, x, y ∈ Z). Show that

{u,−u, u−1,−u−1} = {x+ y
√
N, x− y

√
N,−x+ y

√
N,−x− y

√
N}.

4.3. Below we may use the Dirichlet unit theorem (and its consequences).
4.3.1. Show that the unit group of Q(

√
3) is {±(2 +

√
3)n |n ∈ Z}.

4.3.2. Show that the unit group of Q(
√

7) is {±(8 + 3
√

7)n |n ∈ Z}.
4.3.3. Compute the unit group of Q(

√
5).

5. We may use the Dirichlet unit theorem and the fact that Z[
√

2] is a UFD.
5.1.1. Find infinitely many pairs (x, y) ∈ Z2 such that x2 − 2y2 = 7.
5.1.2. Find all pairs (x, y) ∈ Z2 such that x2 − 2y2 = 7.
5.2.1. Find infinitely many pairs (x, y) ∈ Z2 such that x2 − 2y2 = 17.
5.2.2. Find all pairs (x, y) ∈ Z2 such that x2 − 2y2 = 17.


