2015-11-09 Introduction to number theory Problems

1. Let m € Z be a square free integer (i.e., not divisible by a square other than 1). Suppose
m # +1. Let K = Q(y/m). Recall that the ring of integers Ok of a number field K is the set
(which becomes a ring) of elements a of K such that a is a root of a monic polynomial with
coeflicients in Z.

1.1. Suppose m = 2 (mod 4). Show that O = Z[/m] = {a + by/m|a,b € Z}.

1.2. Suppose m = 3 (mod 4). Show that O = Z] ] {a+by/m|a,beZ}.

1.3. Suppose m = 1 (mod 4). Show that O = Z[*¥™] = {a + b(%m) la,beZ}.

2. Let K = Q(v/—26). From 1.1 above, it follows that O = Z[v/—26]. Let us show that O is
not a unique factorization domain.

2.1.1. Show that 1 4+ +/—26 and 1 — 4/—26 are not units.

2.1.2. Recall that a nonzero element o« € A, which is not a unit, is a prime element if ab € aA
implies a € aA or b € aA. Use 3% = (1 +1/=26)(1 — v/—26) to conclude that 3 is not a prime
element.

2.2. We show that there does not exist a prime element which divides 3.

2.2.1. Suppose there exists a prime element o that divides 3. Show, using that 3 is not a prime
element, that 3 = a@. (See the exercises from 2015-11-02.)

2.2.2. Set a = x+yv/—26. From 2.2.1, we obtain 3 = 2% +26y?. Show that there are no solutions
in Z and conclude that O is not a unique factorization domain.

2.3. Consider ideals a = (3,1 + +/—26) and b = (3,1 — v/—26).

2.3.1. Show that a is not a principal ideal.

2.3.2. Show that b is not a principal ideal.

2.3.3. Show that a is a prime ideal.

2.3.4. Show that b is a prime ideal.

2.3.5. Recall that the product I.J of two ideals I and J is

J = {Zxkyk

k=1

nGN,xkEI,ykGJ}.

Show that (3) = ab.

2.3.6. Show that (1 + /—26) = a.

2.3.7. Show that (1 —+/—26) = b3.

Remark: Hence we can understand the equation 3* = (1++/—26)(1 —/—26) using ideals in the

following way: (3%) = a®b3 = ((1 ++/—26)(1 — /—26)).

3.

3.1. Let A be a domain. Let @ € A be a nonzero element. Prove that « is a prime element if

and only if oA is a prime ideal.

3.2. Show that the set of prime ideals of Z is {(p) | p a prime number} U {(0)}.

3.3. Let K be a number field. Let a and b be two fractional ideals (in the Dedekind domain

Of). Show that their product ab is also a fractional ideal. (The product of fractional ideals is

defined using the same expression for the product of ideals.) (see above)

3.4.Set at = {z € K|za € Og}. Show that aa™! = O.

3.5. Show that if a is a principal fractional ideal, that is, a = aOg C K for some a € K*, then
—1 1 OK

3.6. Lot K — Q(v/—26) and a = (3,1 + v/—26) C Ok be an ideal. Find z,y € K such that

a !t =20k +yOk.



4.

4.1.1 Show that the unit group of Q(y/—1) is cyclic of order 4.

4.1.2. Show that the unit group of Q(v/=3) is cyclic of order 6.

4.1.3. Show that the unit group of a quadratic imaginary field Q(y/m), where m is a negative
square free integer such that m # —1, —3, is of order 2.

4.2.1. Show that the set of roots of unity contained in a real quadratic field is {£1}.

4.2.2. Let B be a subgroup of Z & Z /27, whose cardinality is infinite. Suppose there is a nonzero
element b € B such that 2b = 0. Show that B = Z & Z/27Z.

4.2.3. Let N # 1 be a positive square free integer. Let u = x +yv/N € Z[v/N]* be an invertible
element (here, z,y € Z). Show that

{U, —u, u_lv _u_l} = {I + y\/ﬁ7 T — y\/ﬁa -+ y\/ﬁa —T — y\/ﬁ}

4.3. Below we may use the Dirichlet unit theorem (and its consequences).
4.3.1. Show that the unit group of Q(v/3) is {£(2+ v/3)" |n € Z}.

4.3.2. Show that the unit group of Q(v/7) is {£(8 4+ 3v/7)" |n € Z}.
4.3.3. Compute the unit group of Q(v/5).

5. We may use the Dirichlet unit theorem and the fact that Z[v/2] is a UFD.
5.1.1. Find infinitely many pairs (z,y) € Z? such that x? — 2y*> = 7.

5.1.2. Find all pairs (z,y) € Z? such that 2? — 2y*> = 7.

5.2.1. Find infinitely many pairs (z,y) € Z? such that x? — 2y = 17.

5.2.2. Find all pairs (z,y) € Z? such that z* — 2y* = 17.



