2015-11-09 Introduction to number theory Problems

1. Let $m \in \mathbb{Z}$ be a square free integer (i.e., not divisible by a square other than 1). Suppose $m \neq \pm 1$. Let $K=\mathbb{Q}(\sqrt{m})$. Recall that the ring of integers \mathcal{O}_{K} of a number field K is the set (which becomes a ring) of elements a of K such that a is a root of a monic polynomial with coefficients in \mathbb{Z}.
1.1. Suppose $m \equiv 2(\bmod 4)$. Show that $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{m}]=\{a+b \sqrt{m} \mid a, b \in \mathbb{Z}\}$.
1.2. Suppose $m \equiv 3(\bmod 4)$. Show that $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{m}]=\{a+b \sqrt{m} \mid a, b \in \mathbb{Z}\}$.
1.3. Suppose $m \equiv 1(\bmod 4)$. Show that $\mathcal{O}_{K}=\mathbb{Z}\left[\frac{1+\sqrt{m}}{2}\right]=\left\{\left.a+b\left(\frac{1+\sqrt{m}}{2}\right) \right\rvert\, a, b \in \mathbb{Z}\right\}$.
2. Let $K=\mathbb{Q}(\sqrt{-26})$. From 1.1 above, it follows that $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-26}]$. Let us show that \mathcal{O}_{K} is not a unique factorization domain.
2.1.1. Show that $1+\sqrt{-26}$ and $1-\sqrt{-26}$ are not units.
2.1.2. Recall that a nonzero element $\alpha \in A$, which is not a unit, is a prime element if $a b \in \alpha A$ implies $a \in \alpha A$ or $b \in \alpha A$. Use $3^{3}=(1+\sqrt{-26})(1-\sqrt{-26})$ to conclude that 3 is not a prime element.
2.2. We show that there does not exist a prime element which divides 3 .
2.2.1. Suppose there exists a prime element α that divides 3 . Show, using that 3 is not a prime element, that $3=\alpha \bar{\alpha}$. (See the exercises from 2015-11-02.)
2.2.2. Set $\alpha=x+y \sqrt{-26}$. From 2.2.1, we obtain $3=x^{2}+26 y^{2}$. Show that there are no solutions in \mathbb{Z} and conclude that \mathcal{O}_{K} is not a unique factorization domain.
2.3. Consider ideals $\mathfrak{a}=(3,1+\sqrt{-26})$ and $\mathfrak{b}=(3,1-\sqrt{-26})$.
2.3.1. Show that \mathfrak{a} is not a principal ideal.
2.3.2. Show that \mathfrak{b} is not a principal ideal.
2.3.3. Show that \mathfrak{a} is a prime ideal.
2.3.4. Show that \mathfrak{b} is a prime ideal.
2.3.5. Recall that the product $I J$ of two ideals I and J is

$$
I J=\left\{\sum_{k=1}^{n} x_{k} y_{k} \mid n \in \mathbb{N}, x_{k} \in I, y_{k} \in J\right\} .
$$

Show that $(3)=\mathfrak{a b}$.
2.3.6. Show that $(1+\sqrt{-26})=\mathfrak{a}^{3}$.
2.3.7. Show that $(1-\sqrt{-26})=\mathfrak{b}^{3}$.

Remark: Hence we can understand the equation $3^{3}=(1+\sqrt{-26})(1-\sqrt{-26})$ using ideals in the following way: $\left(3^{3}\right)=\mathfrak{a}^{3} \mathfrak{b}^{3}=((1+\sqrt{-26})(1-\sqrt{-26}))$.
3.
3.1. Let A be a domain. Let $\alpha \in A$ be a nonzero element. Prove that α is a prime element if and only if αA is a prime ideal.
3.2. Show that the set of prime ideals of \mathbb{Z} is $\{(p) \mid p$ a prime number $\} \cup\{(0)\}$.
3.3. Let K be a number field. Let \mathfrak{a} and \mathfrak{b} be two fractional ideals (in the Dedekind domain \mathcal{O}_{K}). Show that their product $\mathfrak{a b}$ is also a fractional ideal. (The product of fractional ideals is defined using the same expression for the product of ideals.) (see above)
3.4. Set $\mathfrak{a}^{-1}=\left\{x \in K \mid x \mathfrak{a} \in \mathcal{O}_{K}\right\}$. Show that $\mathfrak{a} \mathfrak{a}^{-1}=\mathcal{O}_{K}$.
3.5. Show that if \mathfrak{a} is a principal fractional ideal, that is, $\mathfrak{a}=a \mathcal{O}_{K} \subset K$ for some $a \in K^{\times}$, then $\mathfrak{a}^{-1}=\frac{1}{a} \mathcal{O}_{K}$.
3.6. Let $K=\mathbb{Q}(\sqrt{-26})$ and $\mathfrak{a}=(3,1+\sqrt{-26}) \subset \mathcal{O}_{K}$ be an ideal. Find $x, y \in K$ such that $\mathfrak{a}^{-1}=x \mathcal{O}_{K}+y \mathcal{O}_{K}$.
4.
4.1.1 Show that the unit group of $\mathbb{Q}(\sqrt{-1})$ is cyclic of order 4 .
4.1.2. Show that the unit group of $\mathbb{Q}(\sqrt{-3})$ is cyclic of order 6 .
4.1.3. Show that the unit group of a quadratic imaginary field $\mathbb{Q}(\sqrt{m})$, where m is a negative square free integer such that $m \neq-1,-3$, is of order 2 .
4.2.1. Show that the set of roots of unity contained in a real quadratic field is $\{ \pm 1\}$.
4.2.2. Let B be a subgroup of $\mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$, whose cardinality is infinite. Suppose there is a nonzero element $b \in B$ such that $2 b=0$. Show that $B \cong \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.
4.2.3. Let $N \neq 1$ be a positive square free integer. Let $u=x+y \sqrt{N} \in \mathbb{Z}[\sqrt{N}]^{\times}$be an invertible element (here, $x, y \in \mathbb{Z}$). Show that

$$
\left\{u,-u, u^{-1},-u^{-1}\right\}=\{x+y \sqrt{N}, x-y \sqrt{N},-x+y \sqrt{N},-x-y \sqrt{N}\}
$$

4.3. Below we may use the Dirichlet unit theorem (and its consequences).
4.3.1. Show that the unit group of $\mathbb{Q}(\sqrt{3})$ is $\left\{ \pm(2+\sqrt{3})^{n} \mid n \in \mathbb{Z}\right\}$.
4.3.2. Show that the unit group of $\mathbb{Q}(\sqrt{7})$ is $\left\{ \pm(8+3 \sqrt{7})^{n} \mid n \in \mathbb{Z}\right\}$.
4.3.3. Compute the unit group of $\mathbb{Q}(\sqrt{5})$.
5. We may use the Dirichlet unit theorem and the fact that $\mathbb{Z}[\sqrt{2}]$ is a UFD.
5.1.1. Find infinitely many pairs $(x, y) \in \mathbb{Z}^{2}$ such that $x^{2}-2 y^{2}=7$.
5.1.2. Find all pairs $(x, y) \in \mathbb{Z}^{2}$ such that $x^{2}-2 y^{2}=7$.
5.2.1. Find infinitely many pairs $(x, y) \in \mathbb{Z}^{2}$ such that $x^{2}-2 y^{2}=17$.
5.2.2. Find all pairs $(x, y) \in \mathbb{Z}^{2}$ such that $x^{2}-2 y^{2}=17$.

