2015-11-23 Introduction to number theory Problems

References:

Kato-Kurokawa-Saito, "Number Theory 2: Introduction to Class Field Theory", American Mathematical Society.
J.S.Milne's lecture note "Algebraic Number Theory" available at http://www.jmilne.org/math/CourseNotes/ant.html

1. Let A be a Dedekind domain, and $K=\operatorname{Frac}(A)$. Let L / K be a finite separable extension and B be the integral closure of A in L. Let $\mathfrak{p} \subset A$ be a prime ideal and $\mathfrak{p} B$ be the ideal of B generated by $\mathfrak{p} \subset A \subset B$. Let

$$
\mathfrak{p} B=\mathfrak{q}_{1}^{e_{1}} \cdots \mathfrak{q}_{g}^{e_{g}}
$$

be the prime factorization of $\mathfrak{p} B\left(\mathfrak{q}_{i}\right.$ are distinct prime ideals of B and $\left.e_{i} \geq 1\right)$.
1.1. Show that the set of prime ideals lying over \mathfrak{p} is $\left\{\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{g}\right\}$.
1.2. Suppose L / K is a Galois extension. Let $\sigma \in \operatorname{Gal}(L / K)$ be an automorphism $L \xlongequal{\cong} L$ of K algebras. Show that it induces an isomorphism $B \stackrel{\cong}{\rightrightarrows} B$ of A-algebras.
1.3. Let \mathfrak{q}_{1} and \mathfrak{q}_{2} be primes lying over \mathfrak{p}. Let $\sigma \in \operatorname{Gal}(L / K)$ and suppose $\sigma\left(\mathfrak{q}_{1}\right)=\mathfrak{q}_{2}$.
1.3.1. Show that $e\left(\mathfrak{p}, \mathfrak{q}_{1}\right)=e\left(\mathfrak{p}, \mathfrak{q}_{2}\right)$.
1.3.2. Show that $f\left(\mathfrak{p}, \mathfrak{q}_{1}\right)=f\left(\mathfrak{p}, \mathfrak{q}_{2}\right)$.
2.1. Show that $\mathbb{Z}[\sqrt{-1}] / 3 \mathbb{Z}[\sqrt{-1}]$ is a 2 -dimensional vector space over \mathbb{F}_{3}.
2.2. Show that $\mathbb{Z}[\sqrt{-1}] /(2+\sqrt{-1}) \mathbb{Z}[\sqrt{-1}]$ is a 1 -dimensional vector space over \mathbb{F}_{5}.
3. In this problem, you may use the following proposition.

Proposition: Let A be a Dedekind domain and $K=\operatorname{Frac}(A)$. Let L / K be a finite separable extension and B be the integral closure of A in L. Let $\alpha \in L$ be an element such that $L=K(\alpha)$. Let $f(T) \in K[T]$ be the monic polynomial of minimal degree such that $f(\alpha)=0$. Suppose $B=A[\alpha]$. Then the different $\mathcal{D}(B / A)$ is equal to $\left(f^{\prime}(\alpha)\right)$.

Let $A=\mathbb{Z}, K=\operatorname{Frac}(A)=\mathbb{Q}$. Let $L=\mathbb{Q}(\sqrt{m})$ where m is a square free integer. Let B be the ring of integers of L. Recall that (see the problem sets on 2015-11-09)

$$
B= \begin{cases}\mathbb{Z}[\sqrt{m}] & \text { if } m \equiv 2,3(\bmod 4) \\ \mathbb{Z}\left[\frac{1+\sqrt{m}}{2}\right] & \text { if } m \equiv 1(\bmod 4)\end{cases}
$$

3.1. Compute the different $\mathcal{D}(B / A)$ when $m \equiv 2,3(\bmod 4)$.
3.2. Compute the different $\mathcal{D}(B / A)$ when $m \equiv 1(\bmod 4)$.
4. Let $A=\mathbb{Z}, K=\operatorname{Frac}(A)=\mathbb{Q}$. Let $L=\mathbb{Q}(\sqrt{m})$ where m is a square free integer. Let B be the ring of integers of L.
4.1. Let $p \in \mathbb{Z}$ be an odd prime number which does not divide m. Show that the prime ideal $p \mathbb{Z}$ is totally split in L if $\left(\frac{m}{p}\right)=1$.
4.2. Let $p \in \mathbb{Z}$ be an odd prime number which does not divide m. Show that the prime ideal $p \mathbb{Z}$ is totally split in L only if $\left(\frac{m}{p}\right)=1$.
5. Let u_{n} be the n-th Fibonacci number. For example, $u_{0}=0, u_{1}=1, u_{2}=1, u_{3}=2, \ldots$. The recursion relation $u_{n+2}=u_{n+1}+u_{n}$ for $n \geq 0$ is satisfied. We have

$$
u_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

5.1. Let $p \neq 5$ a prime number. Suppose $m \equiv n\left(\bmod \left(p^{2}-1\right)\right)$. Show that $u_{m} \equiv u_{n}(\bmod p)$. (Suggestion: consider the decomposition of p in $\mathbb{Q}(\sqrt{5})$.)
5.2. Let p be a prime number such that $p \equiv \pm 1(\bmod 5)$. Suppose that $m \equiv n(\bmod (p-1))$. Show that $u_{m} \equiv u_{n}(\bmod p)$. (Suggestion: consider the factorization of p in (the ring of integers of) $\mathbb{Q}(\sqrt{5})$.)
6.1.1. Let p be a prime number such that $p \equiv 3(\bmod 4)$. Show that the canonical inclusion $\mathbb{Q}_{p} \subset \mathbb{Q}_{p}(\sqrt{-1})$ is not an isomorphism.
6.1.2. Show that it is the unramified extension of degree 2 .
6.2. Let p be a prime number such that $p \equiv 1(\bmod 4)$. Show that the canonical inclusion $\mathbb{Q}_{p} \subset \mathbb{Q}_{p}(\sqrt{-1})$ is an isomorphism.
6.3. Find the unramified extension of \mathbb{Q}_{5} of degree 2 .

