2015-11-23 Introduction to number theory Problems

References:

Kato-Kurokawa-Saito, "Number Theory 2: Introduction to Class Field Theory", American Mathematical Society. J.S.Milne's lecture note "Algebraic Number Theory" available at

http://www.jmilne.org/math/CourseNotes/ant.html

1. Let A be a Dedekind domain, and $K = \operatorname{Frac}(A)$. Let L/K be a finite separable extension and B be the integral closure of A in L. Let $\mathfrak{p} \subset A$ be a prime ideal and $\mathfrak{p}B$ be the ideal of B generated by $\mathfrak{p} \subset A \subset B$. Let

 $\mathfrak{p}B=\mathfrak{q}_1^{e_1}\cdots\mathfrak{q}_g^{e_g}$

be the prime factorization of $\mathfrak{p}B$ (\mathfrak{q}_i are distinct prime ideals of B and $e_i \geq 1$).

1.1. Show that the set of prime ideals lying over \mathfrak{p} is $\{\mathfrak{q}_1, \ldots, \mathfrak{q}_g\}$.

1.2. Suppose L/K is a Galois extension. Let $\sigma \in \text{Gal}(L/K)$ be an automorphism $L \xrightarrow{\cong} L$ of K algebras. Show that it induces an isomorphism $B \xrightarrow{\cong} B$ of A-algebras.

1.3. Let \mathfrak{q}_1 and \mathfrak{q}_2 be primes lying over \mathfrak{p} . Let $\sigma \in \operatorname{Gal}(L/K)$ and suppose $\sigma(\mathfrak{q}_1) = \mathfrak{q}_2$.

1.3.1. Show that $e(\mathfrak{p},\mathfrak{q}_1) = e(\mathfrak{p},\mathfrak{q}_2)$.

- 1.3.2. Show that $f(\mathfrak{p},\mathfrak{q}_1) = f(\mathfrak{p},\mathfrak{q}_2)$.
- 2.1. Show that $\mathbb{Z}[\sqrt{-1}]/3\mathbb{Z}[\sqrt{-1}]$ is a 2-dimensional vector space over \mathbb{F}_3 . 2.2. Show that $\mathbb{Z}[\sqrt{-1}]/(2+\sqrt{-1})\mathbb{Z}[\sqrt{-1}]$ is a 1-dimensional vector space over \mathbb{F}_5 .

3. In this problem, you may use the following proposition.

Proposition: Let A be a Dedekind domain and $K = \operatorname{Frac}(A)$. Let L/K be a finite separable extension and B be the integral closure of A in L. Let $\alpha \in L$ be an element such that $L = K(\alpha)$. Let $f(T) \in K[T]$ be the monic polynomial of minimal degree such that $f(\alpha) = 0$. Suppose $B = A[\alpha]$. Then the different $\mathcal{D}(B/A)$ is equal to $(f'(\alpha))$.

Let $A = \mathbb{Z}$, $K = \operatorname{Frac}(A) = \mathbb{Q}$. Let $L = \mathbb{Q}(\sqrt{m})$ where *m* is a square free integer. Let *B* be the ring of integers of *L*. Recall that (see the problem sets on 2015-11-09)

$$B = \begin{cases} \mathbb{Z}[\sqrt{m}] & \text{if } m \equiv 2, 3 \pmod{4}, \\ \mathbb{Z}\left[\frac{1+\sqrt{m}}{2}\right] & \text{if } m \equiv 1 \pmod{4}. \end{cases}$$

3.1. Compute the different $\mathcal{D}(B/A)$ when $m \equiv 2, 3 \pmod{4}$.

3.2. Compute the different $\mathcal{D}(B/A)$ when $m \equiv 1 \pmod{4}$.

4. Let $A = \mathbb{Z}$, $K = \operatorname{Frac}(A) = \mathbb{Q}$. Let $L = \mathbb{Q}(\sqrt{m})$ where m is a square free integer. Let B be the ring of integers of L.

4.1. Let $p \in \mathbb{Z}$ be an odd prime number which does not divide m. Show that the prime ideal $p\mathbb{Z}$ is totally split in L if $\left(\frac{m}{p}\right) = 1$.

4.2. Let $p \in \mathbb{Z}$ be an odd prime number which does not divide m. Show that the prime ideal $p\mathbb{Z}$ is totally split in L only if $\left(\frac{m}{p}\right) = 1$.

5. Let u_n be the *n*-th Fibonacci number. For example, $u_0 = 0, u_1 = 1, u_2 = 1, u_3 = 2, ...$ The recursion relation $u_{n+2} = u_{n+1} + u_n$ for $n \ge 0$ is satisfied. We have

$$u_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right).$$

5.1. Let $p \neq 5$ a prime number. Suppose $m \equiv n \pmod{(p^2 - 1)}$. Show that $u_m \equiv u_n \pmod{p}$. (Suggestion: consider the decomposition of p in $\mathbb{Q}(\sqrt{5})$.)

5.2. Let p be a prime number such that $p \equiv \pm 1 \pmod{5}$. Suppose that $m \equiv n \pmod{(p-1)}$. Show that $u_m \equiv u_n \pmod{p}$. (Suggestion: consider the factorization of p in (the ring of integers of) $\mathbb{Q}(\sqrt{5})$.)

6.1.1. Let p be a prime number such that $p \equiv 3 \pmod{4}$. Show that the canonical inclusion $\mathbb{Q}_p \subset \mathbb{Q}_p(\sqrt{-1})$ is not an isomorphism.

6.1.2. Show that it is the unramified extension of degree 2.

6.2. Let p be a prime number such that $p \equiv 1 \pmod{4}$. Show that the canonical inclusion $\mathbb{Q}_p \subset \mathbb{Q}_p(\sqrt{-1})$ is an isomorphism.

6.3. Find the unramified extension of \mathbb{Q}_5 of degree 2.