2015-09-28 Problems

Introduction to Number Theory

References:

"Number Theory 1: Fermat's dream" Kato, Kurokawa, Saito, Chapter 2. "p-adic numbers, p-adic analysis and zeta functions" Koblitz, Chapter 1.

1.1. Find $a, b \in \mathbb{Q}$ such that $\operatorname{ord}_p(a+b) \neq \operatorname{ord}_p(a)$ and $\operatorname{ord}_p(a+b) \neq \operatorname{ord}_p(b)$. 1.2. Let $a, b \in \mathbb{Q}$. Let p be a prime number. Prove the following statements: 1.2.1. $\operatorname{ord}_p(ab) = \operatorname{ord}_p(a) + \operatorname{ord}_p(b)$ 1.2.2. $\operatorname{ord}_p(a+b) \leq \min\{\operatorname{ord}_p(a), \operatorname{ord}_p(b)\}$ 1.2.3. $\operatorname{ord}_p(a+b) = \min\{\operatorname{ord}_p(a), \operatorname{ord}_p(b)\}$ if $\operatorname{ord}_p(a) \neq \operatorname{ord}_p(b)$.

2.1. Compute the *p*-adic expansion of $-1 \in \mathbb{Q}_7$.

- 2.2. Compute the *p*-adic expansion of -1 for general *p*.
- 3.1. Show that $(1 5 + 5^2 5^3 + \dots + (-5)^{n-1}) \cdot 6 \equiv 1 \pmod{5^n}$.
- 3.2. Find the inverse of 4 in $\mathbb{Z}/3^4\mathbb{Z}$.
- 3.3. Compute the *p*-adic expansion of $(p+1)^{-1}$.
- 4. Compute the first 3 digits of the *p*-adic expansion of -2 in \mathbb{Q}_5

5.1. Show that there exist two square roots of 6 in \mathbb{Q}_5 . Compute the first 4 digits of their 5-adic expansions.

5.2. Let $a \in \mathbb{Z}$ be an integer such that $a \equiv \pm 1 \pmod{5}$. Show that a square root of a exists in \mathbb{Q}_5 .

- 6.1. Prove that there exists a square root of -1 in \mathbb{Q}_p if and only if $p \equiv 1 \pmod{4}$.
- 6.2. Prove that there exists a square root of -2 in \mathbb{Q}_p if and only if $p \equiv 1, 3 \pmod{8}$.
- 7.1. Find 3 quadratic extensions of \mathbb{Q}_5 .
- 7.2. Show that there exist 3 quadratic extensions of \mathbb{Q}_p when $p \neq 2$.

8. Let $n \in \mathbb{N}$. 8.1. Let [x] denote the largest integer $\leq x$. Show that

$$\operatorname{ord}_{p}(n!) = \sum_{i=1}^{\infty} \left[\frac{n}{p^{i}}\right].$$

8.2. Show that $\log_p n \ge \operatorname{ord}_p n$.

9. Let p be an odd prime. Find a sequence $(x_n)_{n\geq 1}$ of rational numbers that converges to 1 in \mathbb{R} and to 0 in \mathbb{Q}_p .

10. Let p be prime. Let $m \ge 2$ if p = 2 and $m \ge 1$ if $p \ne 2$. We have maps

$$\log: 1 + p^m \mathbb{Z}_p \to p^m \mathbb{Z}_p, \ \exp: p^m \mathbb{Z}_p \to 1 + p^m \mathbb{Z}_p.$$

Prove the following statements (may look at the proof for \mathbb{R} or for \mathbb{C}): 10.1. $\exp(x + y) = \exp(x) \exp(y)$. 10.2. $\log(ts) = \log(t) + \log(s)$ 10.3. $\log(\exp(t)) = t$ 10.4. $\exp(\log(x)) = x$

11. Let $a \in \mathbb{Q}_p^{\times}$.

11.1 Let $(x_n)_{n\geq 1}$ be a Cauchy sequence of rational numbers that converges to a. Show that the *p*-adic order becomes constant for large n, i.e., show that there exists N such that $\operatorname{ord}_p(x_N) = \operatorname{ord}_p(x_{N+1}) = \cdots$.

11.2. If $(y_n)_{n\geq 1}$ is another Cauchy sequence converging to a, show that the constant values are equal. That is, show that $\operatorname{ord}_p(x_n) = \operatorname{ord}_p(y_n)$ for n large.

12. We use the constant in Problem 11 and define $\operatorname{ord}_p(a)$ to be that constant for $a \in \mathbb{Q}_p$. 12.1. Suppose the *p*-adic expansion is given by $a = a_m p^m + a_{m+1} p^{m+1} + \cdots$ with $a_m \neq 0$. Show that $\operatorname{ord}_p(a) = m$.

12.2. Prove the statements 1.2.1-1.2.3 for $a, b \in \mathbb{Q}_p$.

12.3. Set $\mathbb{Z}_p = \{a \in \mathbb{Q}_p \mid \operatorname{ord}_p a \ge 0\}$. Show that \mathbb{Z}_p is a subring of \mathbb{Q}_p . Give a nonzero noninvertible element.

13.1 Show that $\mathbb{Z}_p \subset \mathbb{Q}_p$ is open and closed. 13.2 Show that $p^m \mathbb{Z}_p = \{a \in \mathbb{Q}_p \mid \operatorname{ord}_p a \geq m\}$. 13.3 Show that $\mathbb{Z}_{(p)} \subset \mathbb{Z}_p$. 13.4 Show that $\mathbb{Q} \cap \mathbb{Z}_p = \mathbb{Z}_{(p)}$. 13.5 Show that the group homomorphisms

$$\mathbb{Z}/p^m\mathbb{Z} \to \mathbb{Z}_{(p)}/p^m\mathbb{Z}_{(p)} \to \mathbb{Z}_p/p^m\mathbb{Z}_p$$

induced by the inclusions $\mathbb{Z} \subset \mathbb{Z}_{(p)} \subset \mathbb{Z}_p$ are isomorphisms. 13.6. Show that the closure of $\mathbb{Z}_{(p)}$ in \mathbb{Q}_p equals \mathbb{Z}_p . 13.7. Show that the closure of \mathbb{Z} in \mathbb{Q}_p equals \mathbb{Z}_p .