2015-09-28 Problems

Introduction to Number Theory

References:

"Number Theory 1: Fermat's dream" Kato, Kurokawa, Saito, Chapter 2.
"p-adic numbers, p-adic analysis and zeta functions" Koblitz, Chapter 1.
1.1. Find $a, b \in \mathbb{Q}$ such that $\operatorname{ord}_{p}(a+b) \neq \operatorname{ord}_{p}(a)$ and $\operatorname{ord}_{p}(a+b) \neq \operatorname{ord}_{p}(b)$.
1.2. Let $a, b \in \mathbb{Q}$. Let p be a prime number. Prove the following statements:
1.2.1. $\operatorname{ord}_{p}(a b)=\operatorname{ord}_{p}(a)+\operatorname{ord}_{p}(b)$
1.2.2. $\operatorname{ord}_{p}(a+b) \leq \min \left\{\operatorname{ord}_{p}(a), \operatorname{ord}_{p}(b)\right\}$
1.2.3. $\operatorname{ord}_{p}(a+b)=\min \left\{\operatorname{ord}_{p}(a), \operatorname{ord}_{p}(b)\right\}$ if $\operatorname{ord}_{p}(a) \neq \operatorname{ord}_{p}(b)$.
2.1. Compute the p-adic expansion of $-1 \in \mathbb{Q}_{7}$.
2.2. Compute the p-adic expansion of -1 for general p.
3.1. Show that $\left(1-5+5^{2}-5^{3}+\cdots+(-5)^{n-1}\right) \cdot 6 \equiv 1\left(\bmod 5^{n}\right)$.
3.2. Find the inverse of 4 in $\mathbb{Z} / 3^{4} \mathbb{Z}$.
3.3. Compute the p-adic expansion of $(p+1)^{-1}$.
4. Compute the first 3 digits of the p-adic expansion of -2 in \mathbb{Q}_{5}
5.1. Show that there exist two square roots of 6 in \mathbb{Q}_{5}. Compute the first 4 digits of their 5 -adic expansions.
5.2. Let $a \in \mathbb{Z}$ be an integer such that $a \equiv \pm 1(\bmod 5)$. Show that a square root of a exists in \mathbb{Q}_{5}.
6.1. Prove that there exists a square root of -1 in \mathbb{Q}_{p} if and only if $p \equiv 1(\bmod 4)$.
6.2. Prove that there exists a square root of -2 in \mathbb{Q}_{p} if and only if $p \equiv 1,3(\bmod 8)$.
7.1. Find 3 quadratic extensions of \mathbb{Q}_{5}.
7.2. Show that there exist 3 quadratic extensions of \mathbb{Q}_{p} when $p \neq 2$.
8. Let $n \in \mathbb{N}$.
8.1. Let $[x]$ denote the largest integer $\leq x$. Show that

$$
\operatorname{ord}_{p}(n!)=\sum_{i=1}^{\infty}\left[\frac{n}{p^{i}}\right] .
$$

8.2. Show that $\log _{p} n \geq \operatorname{ord}_{p} n$.
9. Let p be an odd prime. Find a sequence $\left(x_{n}\right)_{n \geq 1}$ of rational numbers that converges to 1 in \mathbb{R} and to 0 in \mathbb{Q}_{p}.
10. Let p be prime. Let $m \geq 2$ if $p=2$ and $m \geq 1$ if $p \neq 2$. We have maps

$$
\log : 1+p^{m} \mathbb{Z}_{p} \rightarrow p^{m} \mathbb{Z}_{p}, \quad \exp : p^{m} \mathbb{Z}_{p} \rightarrow 1+p^{m} \mathbb{Z}_{p}
$$

Prove the following statements (may look at the proof for \mathbb{R} or for \mathbb{C}):
10.1. $\exp (x+y)=\exp (x) \exp (y)$.
10.2. $\log (t s)=\log (t)+\log (s)$
10.3. $\log (\exp (t))=t$
10.4. $\exp (\log (x))=x$
11. Let $a \in \mathbb{Q}_{p}^{\times}$.
11.1 Let $\left(x_{n}\right)_{n \geq 1}$ be a Cauchy sequence of rational numbers that converges to a.

Show that the p-adic order becomes constant for large n, i.e., show that there exists N such that $\operatorname{ord}_{p}\left(x_{N}\right)=\operatorname{ord}_{p}\left(x_{N+1}\right)=\cdots$.
11.2. If $\left(y_{n}\right)_{n \geq 1}$ is another Cauchy sequence converging to a, show that the constant values are equal. That is, show that $\operatorname{ord}_{p}\left(x_{n}\right)=\operatorname{ord}_{p}\left(y_{n}\right)$ for n large.
12. We use the constant in Problem 11 and define $\operatorname{ord}_{p}(a)$ to be that constant for $a \in \mathbb{Q}_{p}$.
12.1. Suppose the p-adic expansion is given by $a=a_{m} p^{m}+a_{m+1} p^{m+1}+\cdots$ with $a_{m} \neq 0$. Show that $\operatorname{ord}_{p}(a)=m$.
12.2. Prove the statements 1.2.1-1.2.3 for $a, b \in \mathbb{Q}_{p}$.
12.3. Set $\mathbb{Z}_{p}=\left\{a \in \mathbb{Q}_{p} \mid \operatorname{ord}_{p} a \geq 0\right\}$. Show that \mathbb{Z}_{p} is a subring of \mathbb{Q}_{p}. Give a nonzero noninvertible element.
13.1 Show that $\mathbb{Z}_{p} \subset \mathbb{Q}_{p}$ is open and closed.
13.2 Show that $p^{m} \mathbb{Z}_{p}=\left\{a \in \mathbb{Q}_{p} \mid \operatorname{ord}_{p} a \geq m\right\}$.
13.3 Show that $\mathbb{Z}_{(p)} \subset \mathbb{Z}_{p}$.
13.4 Show that $\mathbb{Q} \cap \mathbb{Z}_{p}=\mathbb{Z}_{(p)}$.
13.5 Show that the group homomorphisms

$$
\mathbb{Z} / p^{m} \mathbb{Z} \rightarrow \mathbb{Z}_{(p)} / p^{m} \mathbb{Z}_{(p)} \rightarrow \mathbb{Z}_{p} / p^{m} \mathbb{Z}_{p}
$$

induced by the inclusions $\mathbb{Z} \subset \mathbb{Z}_{(p)} \subset \mathbb{Z}_{p}$ are isomorphisms.
13.6. Show that the closure of $\mathbb{Z}_{(p)}$ in \mathbb{Q}_{p} equals \mathbb{Z}_{p}.
13.7. Show that the closure of \mathbb{Z} in \mathbb{Q}_{p} equals \mathbb{Z}_{p}.

