2015-09-21 Problems

Introduction to Number Theory

Reference: "Number Theory 1: Fermat's dream" Kato, Kurokawa, Saito, Chapter 2.

1. Find some rational points on $x^{2}+y^{2}=5$ other than $(\pm 1, \pm 2),(\pm 2, \pm 1)$.
2. Let v be either a prime number or ∞. Let $a, b \in \mathbb{Q}^{\times}$. Prove the following statements:
2.1. $(a, b)_{v}=(b, a)_{v}$.
2.2. $(a, b c)_{v}=(a, b)_{v}(a, c)_{v}$.
2.3. $(a,-a)_{v}=1$
2.4. $(a, 1-a)_{v}=1$ if $a \neq 1$.
2.5. Let p be an odd prime. Let $a, b \in\left(\mathbb{Z}_{(p)}\right)^{\times}$.
2.5.1. $(a, b)_{p}=1$
2.5.2. $(a, p b)_{p}=\left(\frac{a \bmod p}{p}\right)$.
2.6. Let $a, b \in \mathbb{Z}_{(2)}^{\times}$.
2.6.1. $(a, b)_{2}=1$ if $a \equiv 1(\bmod 4)$ or $b \equiv 1(\bmod 4)$.
2.6.2. $(a, b)_{2}=-1$ if $a \equiv b \equiv-1(\bmod 4)$.
2.6.3. $(a, 2 b)_{2}= \begin{cases}1 & \text { if } a \equiv 1(\bmod 8) \text { or } a \equiv 1-2 b(\bmod 8) \text {. } \\ -1 & \text { otherwise. }\end{cases}$
3. In this exercise, we will prove the following theorem:

Theorem. Let $a, b \in \mathbb{Q}^{\times}$. Then $(a, b)_{v}=1$ for almost all v and

$$
\prod_{v}(a, b)_{v}=1
$$

where v runs over all the prime numbers and ∞.
Using the previous exercise and prime factorizations of a and b, we are reduced to the following three cases:
(i) a and b are distinct odd prime numbers,
(ii) a is an odd prime, and $b=-1$ or $b=2$,
(iii) $a=-1$, and $b=-1$ or $b=2$.
3.1. In Case (i), show

$$
(a, b)_{v}= \begin{cases}\left(\frac{b}{a}\right) & \text { if } v=a \\ \left(\frac{a}{b}\right) & \text { if } v=b \\ (-1)^{\frac{a-1}{2} \frac{b-1}{2}} & \text { if } v=2 \\ 1 & \text { otherwise }\end{cases}
$$

Now deduce the theorem in this case using the quadratic reciprocity law.
3.2.1. In Case (ii), show that

$$
(a,-1)_{v}= \begin{cases}\left(\frac{-1}{a}\right) & \text { if } v=a \\ (-1)^{\frac{a-1}{2}} & \text { if } v=2 \\ 1 & \text { otherwise }\end{cases}
$$

3.2.2. In Case (ii), show that

$$
(a, 2)_{v}= \begin{cases}\left(\frac{2}{a}\right) & \text { if } v=a \\ (-1)^{\frac{a^{2}-1}{8}} & \text { if } v=2 \\ 1 & \text { otherwise }\end{cases}
$$

3.2.3. Deduce the theorem for Case (ii) from the (supplementary) quadratic reciprocity law. 3.3.1. Show

$$
(-1,-1)_{v}= \begin{cases}-1 & \text { if } v=2 \text { or } \infty \\ 1 & \text { otherwise }\end{cases}
$$

3.3.2. Show

$$
(-1,2)_{v}=1 \text { for all } v .
$$

3.3.3. Deduce the theorem for Case (iii) from the (supplementary) quadratic reciprocity law.
4. Show that $\left(1+2 \mathbb{Z}_{2}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \times\left(1+4 \mathbb{Z}_{2}\right)$. Here, $\left(1+4 \mathbb{Z}_{2}\right) \subset\left(1+2 \mathbb{Z}_{2}\right) \subset \mathbb{Q}_{2}^{\times}$are groups under multiplication.
5. Let k be a field. Let $a, b, c \in k^{\times}$and $r \in k$. Suppose $r^{2}-a=b c$. Set

$$
\begin{aligned}
& X=\left\{(x, y, z) \in k^{3} \mid a x^{2}+b y^{2}=z^{2},(x, y, z) \neq(0,0,0)\right\}, \\
& Y=\left\{(x, y, z) \in k^{3} \mid a x^{2}+c y^{2}=z^{2},(x, y, z) \neq(0,0,0)\right\} .
\end{aligned}
$$

Show that $X \cong Y$. Use that the following maps $f: X \rightarrow Y, g: Y \rightarrow X$ are inverses of one another:

$$
\begin{aligned}
& f(x, y, z)=(r x+z, b y, a x+r z), \\
& g(x, y, z)=\left(\frac{r x-z}{r^{2}-a}, \frac{y}{b}, \frac{-a x+r z}{r^{2}-a}\right) .
\end{aligned}
$$

6. Let p be an odd prime. Show that $\left(1+p \mathbb{Z}_{p}\right)^{2}=\left(1+p \mathbb{Z}_{p}\right)$. Is it true for $p=2$?
7. Let $p \neq 2,3$ be a prime number. Show that there exists a square root of -3 in \mathbb{F}_{p} if and only if $p \equiv 1(\bmod 3)$.
