# 2015-10-12 Problems 

## Introduction to Number Theory

## References:

"Number Theory 1: Fermat's dream" Kato, Kurokawa, Saito, Chapter 3.

1. In this exercise, we prove the formula due to Bernoulli and Seki.
1.1. Let $D: \mathbb{C}[x] \rightarrow \mathbb{C}[x]$ denote the linear operator

$$
D(f(x))=\frac{d}{d x}(f(x)) .
$$

Set

$$
e^{D}=\sum_{n=0}^{\infty} \frac{D^{n}}{n!}
$$

1.2. Show that $e^{D}(f(x))=f(x+1)$ holds for any $f(x) \in \mathbb{C}[x]$.
1.3. Show that

$$
D(f(x))=e^{D} \sum_{n=0}^{\infty} \frac{B_{n}}{n!}\left(D^{n}(f(x))\right)-\sum_{n=0}^{\infty} \frac{B_{n}}{n!}\left(D^{n}(f(x))\right)
$$

holds for any $f(x) \in \mathbb{C}[x]$. Here $D^{n}(f(x))=D(D(\ldots(D(f(x)))$ ( $D$ appearing $n$-times).
1.4. Show that

$$
r x^{r-1}=B_{r}(x+1)-B_{r}(x) .
$$

(Apply 1.2 above to $x^{r}$.)
1.5. Deduce the following formula:

$$
\sum_{n=0}^{x-1} n^{r-1}=\frac{1}{r}\left(B_{r}(x)-B_{r}\right) .
$$

2.1. Substitute $x=i(=\sqrt{-1})$ in the formula (Theorem 2.1, 12.10.2015) for $r=1$ and show

$$
\sum_{n \in \mathbb{Z}} \frac{1}{n^{2}+1}=\pi \cdot \frac{e^{2 \pi}+1}{e^{2 \pi}-1}
$$

2.2. Substitute $x=i(=\sqrt{-1})$ in the formula for $r=2$ (Theorem 2.1, 12.10.2015) and show

$$
\sum_{n \in \mathbb{Z}} \frac{1}{\left(n^{2}+1\right)^{2}}=\frac{\frac{\pi}{2} e^{4 \pi}+2 \pi^{2} e^{2 \pi}-\frac{\pi}{2}}{\left(e^{2 \pi}-1\right)^{2}} .
$$

3.1. Show

$$
\zeta_{\equiv a(N)}(0)=-\frac{a}{N}+\frac{1}{2} .
$$

3.2. Show

$$
\zeta_{\equiv a(N)}(-1)=-\frac{a^{2}}{2 N}+\frac{a}{2}-\frac{N}{12}
$$

3.3. Show

$$
\zeta_{\equiv a(N)}(-2)=-\frac{a^{3}}{3 N}+\frac{a^{2}}{2}-\frac{N a}{6} .
$$

## Some analytic properties

$\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$.
$L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}} .(\chi$ is a Dirichlet character.)
$\zeta_{\equiv a(N)}(s)=\sum_{n=1, n \equiv a(N)}^{\infty} \frac{1}{n^{s}}$.
$\zeta(s, x)=\sum_{n=1}^{\infty} \frac{1}{(n+x)^{s}} .(x \in \mathbb{R}, x>0$.
Proposition $1(\operatorname{Re}(s)>1)$. 1. The series above converge absolutey for s satisfying $\operatorname{Re}(s)>$ 1,
2. They are holomorphic in this domain.

Proposition $2(s \in \mathbb{C})$. 1. They have analytic continuation to the entire complex plane $s \in$ $\mathbb{C}$.
2. They are meromorphic functions there ( $s \in \mathbb{C}$ ).
3. They are holomorphic in $s \neq 1$.
4. $\lim _{s \rightarrow 1}(s-1) \zeta(s)=1$,
5. $\lim _{s \rightarrow 1}(s-1) \zeta_{\equiv a(N)}(s)=\frac{1}{N}$,
6. $\lim _{s \rightarrow 1}(s-1) \zeta(s, x)=1$,

Proposition $3(L(s, \chi)$ for nontrivial $\chi)$. Suppose the image of $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$is not $\{1\}$ (we say $\chi$ is nontrivial). Then

1. the defining series of $L(s, \chi)$ converge (the sum taken in the order $n=1,2,3, \ldots$ ) for $s$ satisfying $\operatorname{Re}(s)>0$.
2. It is holomorphic in $\operatorname{Re}(s)>0$.
3. The analytic continuation is holomorphic in the entire complex plane.

## The values at some integers of zeta functions

Theorem 1. The values of the Riemann zeta:

1. Let $r$ be a positive even integer. Then

$$
\zeta(r)=\frac{1}{(r-1)!} \cdot \frac{1}{2^{r}-1} \cdot(2 \pi i)^{r} \cdot \frac{1}{2} \cdot h_{r}(-1) .
$$

2. 

$$
\zeta(0)=-\frac{1}{2} .
$$

3. Let $r \geq 2$ be an integer. Then

$$
\zeta(1-r)=-\frac{1}{r} B_{r}
$$

Theorem 2. The values of the Dirichlet L:
Let $N \geq 2$. Let $\chi$ be a Dirichlet character modulo $N$.

1. Let $r \in \mathbb{N}$ and assume $\chi(-1)=(-1)^{r}$. Set $\zeta_{N}=e^{2 \pi i / N}$. Then

$$
L(r, \chi)=\frac{1}{(r-1)!} \cdot\left(-\frac{2 \pi i}{N}\right)^{r} \cdot \frac{1}{2} \cdot \sum_{a \in(\mathbb{Z} / N \mathbb{Z})^{\times}} \chi(a) h_{r}\left(\zeta_{N}^{a}\right) .
$$

2. Assume that $\chi$ is nontrivial. Then

$$
L(0, \chi)=-\frac{1}{N} \sum_{a=1}^{N} a \chi(a)
$$

Theorem 3. The values of the Hurwitz zeta:
Let $r \in \mathbb{N}$ and $x \in \mathbb{R}, x>0$. Then

$$
\zeta(1-r, x)=-\frac{1}{r} B_{r}(x) .
$$

Theorem 4. The values of the partial zeta:
Let $r, N, a \in \mathbb{N}$ with $1 \leq a \leq N$.

$$
\zeta_{\equiv a(N)}(1-r)=-\frac{1}{r} N^{r-1} B_{r}\left(\frac{a}{N}\right) .
$$

Set

$$
h_{1}(t)=\frac{1+t}{2(1-t)}, h_{r}(t)=\left(t \frac{d}{d t}\right)^{r-1}\left(h_{1}(t)\right) .(r \geq 1)
$$

Proposition 4. Let $x \in \mathbb{C}, x \notin \mathbb{Z}, t=e^{2 \pi i x}$. Then

$$
h_{1}(t)=-\frac{1}{2} \cdot \frac{1}{2 \pi i} \sum_{n \in \mathbb{Z}}\left(\frac{1}{x+n}+\frac{1}{x-n}\right),
$$

and for $r \geq 2$,

$$
h_{r}(t)=(r-1)!\cdot\left(-\frac{1}{2 \pi i}\right)^{r} \sum_{n \in \mathbb{Z}} \frac{1}{(x+n)^{r}} .
$$

## Some problems for the midterm exam

m1. Compute $\left(\frac{-6}{8627}\right)$ where $(\div)$ is the Legendre symbol.
m 2 . Compute $(250,-7)_{5}$ where $(\cdot, \cdot)_{5}$ is the Hilbert symbol.
m3. Compute the 7 -adic expansion of $1 / 8$.
m 4 . Find all pairs $(x, y)$ with $x, y \in \mathbb{Q}$ such that $x^{2}+2 y^{2}=1$.
m 5 . Prove that there does not exist a square root of 5 in $\mathbb{Q}_{7}$.
m6.1. Show that there exist two square roots of 6 in $\mathbb{Q}_{5}$.
m6.2. Compute the first 3 digits of their 5 -adic expansions.
m 7 . Compute the 5 -adic expansion of $1 / 3$.
m 8 . Give a sequence of integers that converges to 0 in $\mathbb{Q}_{3}$ and to 1 in $\mathbb{Q}_{5}$.
m 9 . Consider the equation $-5 x^{2}-y^{2}=1$.
m9.1. Show that the equation has no solution in $\mathbb{Q}$.
m9.2. Show that the equation has a solution in $\mathbb{Q}_{5}$.
m9.3. Is there a prime number $p$ other than 5 such that the equation has a solution in $\mathbb{Q}_{p}$ ? If yes, give an example.
m10. Let $a_{0}+5 a_{1}+5^{2} a_{2}+\cdots=\exp (5)$ denote the 5 -adic expansion. Compute $a_{0}, a_{1}, a_{2}$.
m11. Let $a_{0}+5 a_{1}+5^{2} a_{2}+\cdots=\log (6)$ denote the 5 -adic expansion. Compute $a_{0}, a_{1}, a_{2}$.
m 12 . Find all primitive roots modulo 7 .
m 13.1 . Show that $\mathbb{Z}$ is dense in $\mathbb{Z}_{p}$.
m13.2. Show that $\mathbb{Q}$ is dense in $\mathbb{Q}_{p}$.
m13.3. Show that $\mathbb{Z}_{p}$ is open and closed in $\mathbb{Q}_{p}$.

## From older problem sets

m14. Show that (the validity of) the Goldbach conjecture implies the ternary Goldbach conjecture.
m15.1. Suppose $p$ and $q:=2 p+1$ are primes and $p \equiv 1(\bmod 4)$. Show that 2 is a primitive root modulo $q$.
m15.2. Suppose $p$ and $q:=4 p+1$ are odd primes. Show that 2 is a primitive root modulo $q$.
m16. Show $(-1,2)_{v}=1$ for all $v$.

