2015-11-30 Introduction to number theory Problems

References:

Kato-Kurokawa-Saito, "Number Theory 2: Introduction to Class Field Theory", American Mathematical Society.

Cassels "Global fields", Chapter 2 in Algebraic Number Theory, ed. Cassels, Frohlich.

1. Let K be a locally compact field.

- 1.1. Show that K with addition is a locally compact group.
- 1.2. Show that $K^{\times} = K \setminus \{0\}$ with multiplication is a locally compact group.

2.1. Show that the restricted product of locally compact groups is a locally compact group. It follows that the adeles \mathbb{A}_K and the ideles \mathbb{A}_K^{\times} are locally compact topological groups.

- 2.2. Show that \mathbb{A}_K is a topological ring.
- 2.3. Show that the set of invertibles of \mathbb{A}_K is the ideles \mathbb{A}_K^{\times} .
- 3.1. Let p be prime. Show (directly) that $(\mathbb{R} \times \mathbb{Q}_p)/\mathbb{Z}[\frac{1}{p}]$ is compact.
- 3.2. Show that $\mathbb{Z}[\sqrt{2}]$ is dense in \mathbb{R} .
- 3.3. Let p be prime. Show directly that $\mathbb{Z}[\frac{1}{p}] \subset \mathbb{Q}_p \times \mathbb{R}$ is discrete.

4.1. Show that a discrete compact topological space is finite.

4.2. Let $f: X \to Y$ be a surjective continuous map between topological spaces. Suppose X is compact. Show that Y is compact.

4.3. Let G be a topological group, H be a subgroup. Equip G/H with the quotient topology.

4.3.1. Show that H is open if G/H is discrete.

4.3.2. Show that H is open only if G/H is discrete.

- 4.3.3. Show that H is closed if G/H is Hausdorff.
- 4.3.4. Show that H is closed only if G/H is Hausdorff.

5. Let $n \in \mathbb{N}$. We set $a(n) \in \mathbb{A}_{\mathbb{Q}}$ to be the element such that $a(n)_{\infty} = 1 \in \mathbb{R}$ and $a(n)_p = n! + 1 \in \mathbb{Q}_p$ for primes p.

- 5.1. Show that a(n) tends to 1 in $\mathbb{A}_{\mathbb{Q}}$ as $n \to \infty$.
- 5.2. Show that the sequence a(n) does not converge in $\mathbb{A}_{\mathbb{O}}^{\times}$.
- 6.1. Show that the map $\mathbb{A}_K^{\times} \to \mathbb{R}^{\times}$ which sends x to |x| is continuous.
- 6.2. Show that the map $\mathbb{A}_{K} \to K_{v}$ which sends x to $|x|_{K_{v}}$ is continuous for a finite place v.
- 6.3. Show that the map $\mathbb{A}_K \to \mathbb{R}$ which sends x to |x| is not continuous.

Proposition 1 (6.78). *1.* $K \subset \mathbb{A}_K$ is discrete. 2. \mathbb{A}_K/K is compact.

Proposition 2 (6.81). Let $a \in K^{\times}$. Then |a| = 1.

Theorem 1 (6.82). *1.* $K^{\times} \subset \mathbb{A}_K^{\times}$ is discrete. 2. $C_K^1 = \mathbb{A}_K^1 / K^{\times}$ is compact.

Let S be a set of places of K, which contains all the infinite places. Set

 $\mathcal{O}_S := \{ x \in K \, | \, x \in \mathcal{O}_v \text{ for } v \notin S \}.$

Let $R_S: \mathcal{O}_S^{\times} \to \prod_{v \in S} \mathbb{R}$ denote the group homomorphism that sends x to $(\log |x|_{K_v})_{v \in S}$. Set

$$\left(\prod_{v\in S}\mathbb{R}\right)^{0} := \left\{ (e_{v})_{v\in S} \in \prod_{v\in S}\mathbb{R} \mid \sum_{v\in S} c_{v} = 0 \right\}$$

Proposition 6.81 implies that $R_S(\mathcal{O}_S^{\times}) \subset (\prod_{v \in S} \mathbb{R})^0$.

Proposition 3 (6.83). *1.* $R_S(\mathcal{O}_S^{\times}) \subset (\prod_{v \in S} \mathbb{R})^0$ is discrete. 2. $(\prod_{v \in S} \mathbb{R})^0 / R_S(\mathcal{O}_S^{\times})$ is compact. 3. Ker R_S is finite

Theorem 2 (6.86). Set r = |S| - 1 if $S \neq \emptyset$ and r = 0 if $S = \emptyset$. Then

 $\mathcal{O}_S^{\times} \cong \mathbb{Z}^r \oplus H$

for some finite abelian group H.

Theorem 3. The ideal class group Cl(K) is finite.