Exercises 1. Euler-Lagrange equation. Calc. of Var. and Op. Co., bachelor 3-4 year, 18.01.2016

$$
\text { Deadline - Feburary 11, } 2016 .
$$

$\mathbf{1} \diamond \mathbf{1}$ Solve the following Simplest problems of Variational Calculus:
(a) $J(x)=\int_{0}^{1}(x+\dot{x})^{2} d t, \quad x(0)=0, \quad x(1)=1$;
(b) $J(x)=\int_{1}^{e}\left[\frac{2 x}{t}+x \dot{x}+t^{2} \dot{x}^{2}\right] d t, \quad x(1)=1, \quad x(e)=0$.
$\mathbf{1} \diamond \mathbf{2}$ (Weierstrass) Prove that the following extremal problem

$$
\int_{0}^{1} t^{2} \dot{x}^{2} d t \rightarrow \text { extr }, \quad x(0)=0, \quad x(1)=1
$$

does not has a solution.
$\mathbf{1} \diamond \mathbf{3}$ Solve the following problem with a free end:

$$
J(x)=\int_{0}^{2}\left[2 t x+\dot{x}^{2}\right] d t, \quad x(0)=0 .
$$

$\mathbf{1} \diamond 4$ Solve the following problem without restrictions:

$$
J(x)=\int_{1}^{e}\left[t \dot{x}^{2}+\frac{x^{2}}{t}+\frac{2 x \ln t}{t}\right] d t .
$$

$1 \diamond 5$ Calculate the distance between the parabola $y=x^{2}$ and the line $y=x-5$.
$\mathbf{1} \diamond \mathbf{6}$ The segment of the curve $x=x(t)$ with ends (a, A) and (b, B) rotates around axis $O x$. What should be a curve to the surface area of the rotation was minimal?

