EXERCISES 2. ELEMENTS OF FUNCTIONAL ANALYSIS AND

LAGRANGE MULTIPLIERS

Calc. of Var. and Op. Co., bachelor 3-4 year, 18.02.2016

Deadline - March 10, 2016.
$\mathbf{2} \diamond \mathbf{1}$ Count Fréchet derivatives:
(a) $f: \mathbf{H} \rightarrow(x, x)$, where \mathbf{H} is a Hilbert space;
(b) $f: C([0,1]) \rightarrow \mathbb{R}, f(x(\cdot))=\left(\int_{0}^{1} x^{2}(t) d t\right)^{3}$;
(c) $f: C([0,1]) \rightarrow, f(x(t))=\left(\int_{0}^{1} x^{2}(t) a(t) d t\right)^{3}, a(t) \in C([0,1])$.
$\mathbf{2} \diamond \mathbf{2}$ Find points such that the functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ do not have Fréchet derivatives
(a) $f(x)=\left(\sum_{j=1}^{n} x_{j}^{2}\right)^{1 / 2}$; (b) $f(x)=\max _{1 \leqslant j \leqslant n}\left|x_{j}\right| ; ~(c) ~ f(x)=\sum_{j=1}^{n}\left|x_{j}\right|$.
$\mathbf{2} \diamond \mathbf{3}$ Find linear functionals that do not reaches a maximum value on a sphere in normed spaces:
(a) $c_{0}\left(\|x\|=\max _{k \geqslant 1}\left|x_{k}\right|, \lim _{k \rightarrow \infty} x_{k}=0\right) ;$ (b) $c\left(\|x\|=\sup _{k \geqslant 1}\left|x_{i}\right|, \exists \lim _{k \rightarrow \infty} x_{k}\right)$;
(c) $l_{1}\left(\|x\|=\sum_{k \geqslant 1}\left|x_{k}\right|\right)$; (d) $\left.L_{1}[0,1]\right]\left(\|x\|=\int_{0}^{1}|x(t)| d t\right)$;
(e) $C[0,1]\left(\|x\|=\max _{t \in[0,1]}|x(t)|\right)$.
$\mathbf{2} \diamond 4$ Solve the finite-dimensional problems by means of the method of Lagrange multipliers:
(a) find the maximal volume of the box, which is made of the sheet of paper of area S;
(b) find a discrete random variable χ with n values which has the maximal entropy

$$
H(\xi)=\sum_{i=1}^{n} p_{i} \ln \frac{1}{p_{i}}
$$

(c) Prove the Holder's inequality

$$
\left(\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} \leqslant\left(\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{\frac{1}{q}}, \quad 0<p \leqslant q \leqslant \infty .
$$

(d) $x y z \rightarrow e x t r, x^{2}+y^{2}+z^{2} \leqslant 1$.

