Алгебра-2 (2015-2016): расширения полей, листок 3

Сдавать листок можно вплоть до 25 марта. Каждый пункт оценивается отдельно (а теорвопрос, как обычно, в 2 пункта).

- **1** Пусть поле L конечное расширение поля K. Докажите, что $|Aut_K L| \le [L:K]$. В каком случае достигается равенство и почему?
- **2** Пусть E расширение Галуа F, а $P \in F[x]$ неприводим над F. Покажите, что все неприводимые сомножители P над E имеют одну и ту же степень.
 - **3** Пусть K поле разложения $X^4 2$ над \mathbb{Q} , и $G = Gal(K/\mathbb{Q})$.
- а) Покажите, что $G \cong D_4$, и найдите неподвижное подполе K^C , где C центр G.
- б) Какие подгруппы порядка 4 есть в G? Опишите квадратичные расширения \mathbb{Q} , содержащиеся в K.
- в) Опишите подрасширения K степени 4 над $\mathbb Q$. Какие из них расширения Галуа?

4

- а) Пусть F поле характеристики $\neq 2$ и E расширение Галуа степени 4 над F. Докажите, что имеется квадратичное над F подрасширение $K \subset E$, и что существуют такие $a,b,\epsilon \in F$, что $E=F(\sqrt{a+b\sqrt{\epsilon}})$.
- б) Пусть теперь $a,b,\epsilon\in F$ таковы, что $\sqrt{\epsilon}\not\in F$ и $\sqrt{a+b\sqrt{\epsilon}}\not\in F(\sqrt{\epsilon})$. Покажите, что $E=F(\sqrt{a+b\sqrt{\epsilon}})$ нормально над F тогда и только тогда, когда $a^2-\epsilon b^2$ является квадратом в $F(\sqrt{\epsilon})$.
- в) Выведите отсюда, что если E расширение Галуа F, то $a^2-\epsilon b^2=u^2$ или $a^2-\epsilon b^2=\epsilon u^2$ для некоторого $u\in F$, и укажите группу Галуа в каждом из этих двух случаев.

5

С помощью теории Галуа покажем, что $\mathbb C$ алгебраически замкнуто. Из анализа используем только теорему о промежуточном значении: из нее следует, что любой многочлен нечетной степени в $\mathbb R[X]$ имеет корень в $\mathbb R$.

Пусть K - конечное расширение Галуа \mathbb{R} , содержащее \mathbb{C} , и $G=Gal(K/\mathbb{R}).$

а) Покажите, что порядок G - степень двойки и выведите из этого, что в $Gal(K/\mathbb{C})$, если она нетривиальна, есть подгруппа индекса 2.

б) Покажите, что $\mathbb{C} = \mathbb{R}(i)$ не имеет расширений степени 2, и выведите отсюда, что \mathbb{C} алгебраически замкнуто.

6

- а) Пусть p простое число, K поле характеристики p. Обозначим $\Phi: K \to K$ отображение $\Phi(x) = x^p x$, и пусть L_a ($a \in K$) поле разложения $X^p X a$. Покажите, что $L_a = L_b$ тогда и только тогда, когда существует такой $l \in \mathbb{F}_p^*$, что $b al \in Im\Phi$ (указание: посмотрите на действие группы Галуа на корнях соответствующих многочленов).
- б) Пусть теперь $car(K) \neq p$, и K содержит все корни X^p-1 . Пусть M_a ($a \in K^*$) поле разложения X^p-a . Покажите, что $M_a=M_b$ ($b \in K^*$) тогда и только тогда, когда существует такое целое l, (l,p) = 1, что $\frac{b}{a^l}-p$ -я степень в K.