Elliptic Functions

Takashi Takebe

15 February 2016

- If there are errors in the problems, please fix reasonably and solve them.
- The rule of evaluation is:
$($ your final mark $)=\min \left\{\right.$ integer part of $\frac{3}{2}$ (total points you get), 10$\}$
- About twenty problems will be given till the end of the semester.
- This rule is subject to change and the latest rule applies.
- The deadline of $\mathbf{9 - 1 0}$: 29 February 2016.

9. (1 pt.) Prove that when the modulus $k \in(0,1)$ tends to 1 ,

$$
\begin{aligned}
K(k) & \rightarrow \infty, \\
\operatorname{sn}(u, k) & \rightarrow \tanh u=\frac{\sinh u}{\cosh u}, \\
\operatorname{cn}(u, k), \operatorname{dn}(u, k) & \rightarrow \operatorname{sech} u=\frac{1}{\cosh u} .
\end{aligned}
$$

10.

(1 pt.) Finish the computation omitted in the lecture and complete the proof of the addition formula of $\operatorname{sn} u$. Then, using it, prove the addition formulae of $\operatorname{cn} u$ and $\operatorname{dn} u$:

$$
\begin{aligned}
\operatorname{cn}(u+v) & =\frac{\operatorname{cn} u \operatorname{cn} v-\operatorname{sn} u \operatorname{sn} v \operatorname{dn} u \operatorname{dn} v}{1-k^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v}, \\
\operatorname{dn}(u+v) & =\frac{\operatorname{dn} u \operatorname{dn} v-k^{2} \operatorname{sn} u \operatorname{sn} v \operatorname{cn} u \operatorname{cn} v}{1-k^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v} .
\end{aligned}
$$

