Elliptic Functions

Takashi Takebe

8 February 2016

- If there are errors in the problems, please fix reasonably and solve them.
- The rule of evaluation is:

$$
(\text { your final mark })=\min \left\{\text { integer part of } \frac{3}{2}(\text { total points you get }), 10\right\}
$$

- About twenty problems will be given till the end of the semester.
- This rule is subject to change and the latest rule applies.
- The deadline of $\mathbf{7}-\mathbf{8}$: 22 February 2016.

7.

(1 pt.) If a simple pendulum is made of a stick of length l with negligibly small mass, then it can rotate around the centre. In this case the angle φ is a monotonically increasing function of the time t.

Express its period in terms of elliptic integrals and the energy E. (Hint: In this case, the period is the time from $\varphi=\varphi_{0}$ till $\varphi=\varphi_{0}+2 \pi$. In the lecture we used a constant \tilde{E} which is equal to $E / m l^{2}$, where E is the total energy of the pendulum. Although there is no "maximum amplitude" α for a rotating "pendulum", we can still use \tilde{E} instead of $-\omega^{2} \cos \alpha$. Use $k_{0}:=\sqrt{\frac{2 \omega^{2}}{\omega^{2}+\tilde{E}}}$ as the modulus of the elliptic integral. The modulus k used in the lecture is equal to k_{0}^{-1}.)
8. (1 pt.) Fix $0<k<1$. Prove the following formulae for the complete elliptic integrals of the first kind, using the arithmetic-geometric mean $M(a, b)$ and its properties.

$$
K(k)=\frac{1}{1+k} K\left(\frac{2 \sqrt{k}}{1+k}\right)=\frac{2}{1+k^{\prime}} K\left(\frac{1-k^{\prime}}{1+k^{\prime}}\right)
$$

where k^{\prime} is defined by $k^{2}+k^{\prime 2}=1,0<k^{\prime}<1$.

