Elliptic Functions

Takashi Takebe

4 April 2016

- If there are errors in the problems, please fix *reasonably* and solve them.
- The rule of evaluation is:

(your final mark) = min $\left\{ \text{integer part of } \frac{3}{2} \text{(total points you get)}, 10 \right\}$

- About twenty problems will be given till the end of the semester.
- This rule is subject to change and the latest rule applies.
- The deadline of **11 13**: 18 April 2016.

11. (1 pt.) Let $\varphi(z)$ be a polynomial satisfying the conditions in the lecture (4 April 2016). Show the following:

(i) $\mathcal{R}_{\varphi} := \{(z, w) \in \mathbb{C}^2 \mid F_{\varphi}(z, w) := w^2 - \varphi(z) = 0\}$ is a non-singular algebraic curve over \mathbb{C} .

(ii) The 1-form $\omega := \frac{dz}{w}$ is holomorphic everywhere on \mathcal{R}_{φ} .

12. Show that the closure $\bar{\mathcal{R}}_{\varphi}$ of \mathcal{R}_{φ} in $\mathbb{P}^2(\mathbb{C})$ (cf. lecture on 4 April 2016) is

- (i) (1 pt.) non-singular if deg $\varphi(z) = 3$.
- (ii) (1 pt.) singular if deg $\varphi(z) = 4$.

13. (i) (2 pt.) Show that the elliptic curve $\bar{\mathcal{R}}_{\varphi}$ (deg $\varphi = 3$ or 4) is isomorphic to $\bar{\mathcal{R}}_{\psi}, \psi(z) = (1-z^2)(1-k^2z^2)$ for some $k \in \mathbb{C} \setminus \{0, \pm 1\}$. Namely, construct a biholomorphic bijection $\Phi : \bar{\mathcal{R}}_{\varphi} \xrightarrow{\sim} \bar{\mathcal{R}}_{\psi}$.

(ii) (2 pt.) The same for $\psi(z) = z(1-z)(1-\lambda z), \lambda \in \mathbb{C} \setminus \{0,1\}.$