Elliptic Functions

Elliptic curves

§5.1 Riemann surfaces of $\sqrt{\varphi(x)}, \operatorname{deg} \varphi=3,4$

Want: elliptic integrals $\int R(x, \sqrt{\varphi(x)}) d x$ with complex variables.
\Longrightarrow Need: the Riemann surface \mathcal{R} of $\sqrt{\varphi(x)}, \operatorname{deg} \varphi=3,4$.

The construction is the same as the case of $\sqrt{z}, \sqrt{1-z^{2}}$.

- $\operatorname{deg} \varphi(x)=3$.

$$
\varphi(z)=a\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right)\left(z-\alpha_{3}\right)
$$

$a \neq 0, \alpha_{1}, \alpha_{2}, \alpha_{3}$: distinct.
The Riemann surface \mathcal{R} of $\sqrt{\varphi(x)}$
$=\mathrm{two}$ copies of $\mathbb{C} \backslash\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ glued $\cup\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$.

- $\operatorname{deg} \varphi(x)=4$.

$$
\varphi(z)=a\left(z-\alpha_{0}\right)\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right)\left(z-\alpha_{3}\right)
$$

$a \neq 0, \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}$: distinct.
The Riemann surface \mathcal{R} of $\sqrt{\varphi(x)}$
$=$ two copies of $\mathbb{C} \backslash\left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ glued $\cup\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$.

$$
\begin{aligned}
\mathcal{R} & =\left(\mathbb{C} \backslash\left\{\alpha_{0}, \ldots, \alpha_{3}\right\}\right)_{+} \cup\left\{\alpha_{0}, \ldots, \alpha_{3}\right\} \cup\left(\mathbb{C} \backslash\left\{\alpha_{0}, \ldots, \alpha_{3}\right\}\right)_{-} \\
& =\left\{(z, w) \mid w^{2}=\varphi(z)\right\}
\end{aligned}
$$

Proposition:

For both cases, $\operatorname{deg} \varphi(z)=3$ and 4 ,
(i) $\mathcal{R}=\left\{(z, w) \mid w^{2}=\varphi(z)\right\}$: a non-singular algebraic curve.

$$
\left(\Longleftrightarrow\left(F, \frac{\partial F}{\partial z}, \frac{\partial F}{\partial w}\right) \neq(0,0,0), \text { where } F(z, w)=w^{2}-\varphi(z)\right)
$$

(ii) $\sqrt{\varphi(z)}=w$: holomorphic on \mathcal{R}.
(iii) 1-form $\omega=\frac{d z}{\sqrt{\varphi(z)}}=\frac{d z}{w}$: holomorphic on \mathcal{R}.

Exercise: Check these statements.

§5.2 Compactification and elliptic curves

When $\operatorname{deg} \varphi(z)>2, \int_{z_{0}}^{\infty} \frac{d z}{\sqrt{\varphi(z)}}$ converges.
\Longrightarrow Need to add ∞ to \mathcal{R} (Compactification).

- $\operatorname{deg} \varphi=3$.

Use the embedding into the projective plane \mathbb{P}^{2} :

$$
\begin{aligned}
\mathcal{R}=\left\{(z, w) \mid w^{2}=\varphi(z)\right\} \subset \mathbb{C}^{2} & \hookrightarrow \\
(z, w) & \mapsto[1: z: w]
\end{aligned}
$$

Recall:

$$
\begin{aligned}
& \mathbb{P}^{2}=\mathbb{C}^{3} \backslash\{0\} / \sim \\
&(a, b, c) \sim\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \Longleftrightarrow \exists \lambda \neq 0,(\lambda a, \lambda b, \lambda c)=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)
\end{aligned}
$$

Embedding of \mathbb{C}^{2} into \mathbb{P}^{2} :

$$
\begin{gathered}
\mathbb{C}^{2} \ni(z, w) \mapsto[1: z: w] \in \mathbb{P}^{2}, \\
\mathbb{P}^{2} \supset U_{0}:=\left\{\left[x_{0}: x_{1}: x_{2}\right] \mid x_{0} \neq 0\right\} \ni\left[x_{0}: x_{1}: x_{2}\right] \mapsto\left(\frac{x_{1}}{x_{0}}, \frac{x_{2}}{x_{0}}\right) \in \mathbb{C}^{2} .
\end{gathered}
$$

\mathcal{R} as a subset of $U_{0} \subset \mathbb{P}^{2}:\left(\frac{x_{2}}{x_{0}}\right)^{2}=\varphi\left(\frac{x_{1}}{x_{0}}\right)$, i.e.,

$$
\begin{equation*}
x_{0} x_{2}^{2}=a\left(x_{1}-\alpha_{1} x_{0}\right)\left(x_{1}-\alpha_{2} x_{0}\right)\left(x_{1}-\alpha_{3} x_{0}\right) . \tag{*}
\end{equation*}
$$

Extend \mathcal{R} by this equation:

$$
\overline{\mathcal{R}}:=\left\{\left[x_{0}: x_{1}: x_{2}\right] \mid(*)\right\} \subset \mathbb{P}^{2} .
$$

What points are added to \mathcal{R} ?
Since $\mathbb{P}^{2} \backslash U_{0}=\left\{\left[x_{0}: x_{1}: x_{2}\right] \mid x_{0}=0\right\}$,

$$
\begin{aligned}
\overline{\mathcal{R}} \backslash \mathcal{R} & =\left\{\left[x_{0}: x_{1}: x_{2}\right] \mid x_{0}=0,(*)\right\} \\
& =\left\{\left[x_{0}: x_{1}: x_{2}\right] \mid x_{0}=0=a x_{1}^{3}\right\} \\
& =\left\{\left[x_{0}: x_{1}: x_{2}\right] \mid x_{0}=x_{1}=0\right\}=\{[0: 0: 1]\}
\end{aligned}
$$

Namely, $\quad \overline{\mathcal{R}}=\mathcal{R} \cup\{\infty\}, \infty=[0: 0: 1]$.
The coordinates of \mathbb{P}^{2} in the neighbourhood of $\infty:(\xi, \eta):=\left(\frac{x_{0}}{x_{2}}, \frac{x_{1}}{x_{2}}\right)$.

$$
\begin{aligned}
(*) & \Longleftrightarrow \frac{x_{0}}{x_{2}}=a\left(\frac{x_{1}}{x_{2}}-\alpha_{1} \frac{x_{0}}{x_{2}}\right)\left(\frac{x_{1}}{x_{2}}-\alpha_{2} \frac{x_{0}}{x_{2}}\right)\left(\frac{x_{1}}{x_{2}}-\alpha_{3} \frac{x_{0}}{x_{2}}\right) \\
& \Longleftrightarrow \xi=a\left(\eta-\alpha_{1} \xi\right)\left(\eta-\alpha_{2} \xi\right)\left(\eta-\alpha_{3} \xi\right)
\end{aligned}
$$

Exercise:

Check that the equation

$$
\xi=a\left(\eta-\alpha_{1} \xi\right)\left(\eta-\alpha_{2} \xi\right)\left(\eta-\alpha_{3} \xi\right)
$$

defines a non-singular algebraic curve in the nbd of $(\xi, \eta)=(0,0)$.
$\overline{\mathcal{R}}=$ defined by equation $(*) \Longrightarrow$ closed in \mathbb{P}^{2} \mathbb{P}^{2} : compact

$$
\} \Longrightarrow \overline{\mathcal{R}}: \text { compact. }
$$

$\Longrightarrow \overline{\mathcal{R}}$ is a compact Riemann surface, a compactification of \mathcal{R}.

- $\operatorname{deg} \varphi=4$.

$$
\varphi(z)=a\left(z-\alpha_{0}\right)\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right)\left(z-\alpha_{3}\right) .
$$

Want: compactification of $\mathcal{R}=\left\{(z, w) \mid w^{2}-\varphi(z)=0\right\}$.
Try the same procedure as before:

$$
\begin{aligned}
\mathcal{R} \subset \mathbb{C}^{2} & \hookrightarrow \quad \mathbb{P}^{2} \\
(z, w) & \mapsto[1: z: w] .
\end{aligned}
$$

The homogeneous equation for \mathcal{R} :

$$
\begin{gather*}
\left(\frac{x_{2}}{x_{0}}\right)^{2}-a\left(\frac{x_{1}}{x_{0}}-\alpha_{0}\right)\left(\frac{x_{1}}{x_{0}}-\alpha_{1}\right)\left(\frac{x_{1}}{x_{0}}-\alpha_{2}\right)\left(\frac{x_{1}}{x_{0}}-\alpha_{3}\right)=0, \\
\text { i.e., } x_{0}^{2} x_{2}^{2}-a\left(x_{1}-\alpha_{0} x_{0}\right) \cdots\left(x_{1}-\alpha_{3} x_{0}\right)=0 . \tag{**}
\end{gather*}
$$

As before $\left\{\left[x_{0}: x_{1}: x_{2}\right] \mid(* *)\right\}=\mathcal{R} \cup\{\infty=[0: 0: 1]\}$.

Alas! $\infty=[0: 0: 1]$ is a singular point!
Exercise: Check this.

Another compactification:
Instead of \mathbb{P}^{2}, use $X:=W \cup W^{\prime} / \sim$, where

$$
\begin{gathered}
W=\mathbb{C}^{2} \ni(z, w), \quad W^{\prime}=\mathbb{C}^{2} \ni(\xi, \eta), \\
(z, w) \sim(\xi, \eta) \Longleftrightarrow z \xi=1, w=\frac{\eta}{\xi^{2}}
\end{gathered}
$$

$\mathcal{R} \subset W$ as before. \Longrightarrow the equation of $\mathcal{R} \cap W^{\prime}$:

$$
\begin{gathered}
\left(\frac{\eta}{\xi^{2}}\right)^{2}-a\left(\frac{1}{\xi}-\alpha_{0}\right)\left(\frac{1}{\xi}-\alpha_{1}\right)\left(\frac{1}{\xi}-\alpha_{2}\right)\left(\frac{1}{\xi}-\alpha_{3}\right)=0, \\
\text { i.e., } \eta^{2}-a\left(1-\alpha_{0} \xi\right)\left(1-\alpha_{1} \xi\right)\left(1-\alpha_{2} \xi\right)\left(1-\alpha_{3} \xi\right)=0 .
\end{gathered}
$$

$$
\mathcal{R}^{\prime}:=\left\{(\xi, \eta) \in W^{\prime} \mid \eta^{2}=a\left(1-\alpha_{0} \xi\right)\left(1-\alpha_{1} \xi\right)\left(1-\alpha_{2} \xi\right)\left(1-\alpha_{3} \xi\right)\right\} .
$$

a non-singular algebraic curve as before.

$$
\overline{\mathcal{R}}:=\mathcal{R} \cup \mathcal{R}^{\prime} \subset X=W \cup W^{\prime}
$$

What is $\overline{\mathcal{R}}$?
What point lies in $\overline{\mathcal{R}} \backslash \mathcal{R}$?

$$
\begin{aligned}
& W^{\prime} \backslash W=\{(\xi=0, \eta) \mid \eta \in \mathbb{C}\} \\
\Longrightarrow & \mathcal{R}^{\prime} \backslash \mathcal{R}=\left\{(0, \eta) \mid \eta^{2}=a\right\}=\{(0, \pm \sqrt{a})\} \subset W^{\prime} .
\end{aligned}
$$

They do not belong to W, i.e., they are "infinities": $\infty_{ \pm}:=(0, \pm \sqrt{a})_{W^{\prime}}$.

$$
\overline{\mathcal{R}}=\mathcal{R} \cup\left\{\infty_{+}, \infty_{-}\right\} .
$$

Interpretation of $\overline{\mathcal{R}}$ by the gluing construction:

$$
\begin{aligned}
\mathcal{R} & =(\text { the Riemann surface of } w=\sqrt{\varphi(z)}) \\
& =\left(\mathbb{C} \backslash\left\{\alpha_{0}, \ldots, \alpha_{3}\right\}\right)_{+} \cup\left\{\alpha_{0}, \ldots, \alpha_{3}\right\} \cup\left(\mathbb{C} \backslash\left\{\alpha_{0}, \ldots, \alpha_{3}\right\}\right)_{-} .
\end{aligned}
$$

- When $\alpha_{i} \neq 0$ for $\forall i=0, \ldots, 3$.

Denote $\beta_{i}:=\alpha_{i}^{-1}$.

$$
\begin{aligned}
\mathcal{R}^{\prime}= & \left(\text { the Riemann surface of } \eta=\sqrt{a\left(1-\alpha_{0} \xi\right) \cdots\left(1-\alpha_{3} \xi\right)}\right) \\
= & \left(\mathbb{C} \backslash\left\{\beta_{0}, \ldots, \beta_{3}\right\}\right)_{+} \cup\left\{\beta_{0}, \ldots, \beta_{3}\right\} \cup\left(\mathbb{C} \backslash\left\{\beta_{0}, \ldots, \beta_{3}\right\}\right)_{-} \\
& \left\{\begin{array}{l}
\xi_{+} \longleftrightarrow z_{+}=\frac{1}{\xi_{+}} \\
0_{+} \longleftrightarrow \infty_{+}
\end{array}, \quad \beta_{i} \longleftrightarrow \alpha_{i}=\frac{1}{\beta_{i}},\left\{\begin{array}{l}
\xi_{-} \longleftrightarrow z_{-}=\frac{1}{\xi_{-}} \\
0_{-} \longleftrightarrow \infty_{-}
\end{array}\right.\right.
\end{aligned}
$$

$\Longrightarrow \overline{\mathcal{R}}$ is constructed by gluing two $\mathbb{C} \cup\{\infty\}=\mathbb{P}^{1}$'s together.

$$
\overline{\mathcal{R}}=\left(\mathbb{P}^{1} \backslash\left\{\alpha_{0}, \ldots, \alpha_{3}\right\}\right)_{+} \cup\left\{\alpha_{0}, \ldots, \alpha_{3}\right\} \cup\left(\mathbb{P}^{1} \backslash\left\{\alpha_{0}, \ldots, \alpha_{3}\right\}\right)_{-} .
$$

Figure: two \mathbb{P}^{1} 's with cuts $\alpha_{0} \alpha_{1} \& \alpha_{2} \alpha_{3}$ glued together \cong a torus:

- When one of α_{i} 's (say $\left.\alpha_{0}\right)=0$.
$\mathcal{R}^{\prime}=\left(\right.$ the Riemann surface of $\left.\eta=\sqrt{a\left(1-\alpha_{1} \xi\right)\left(1-\alpha_{2} \xi\right)\left(1-\alpha_{3} \xi\right)}\right)$

$$
=\left(\mathbb{C} \backslash\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}\right)_{+} \cup\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\} \cup\left(\mathbb{C} \backslash\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}\right)_{-} .
$$

\Longrightarrow everything is the same as before.

Definition: Elliptic curve: compactification of $\left\{(z, w) \in \mathbb{C}^{2} \mid w^{2}=\varphi(z)\right\}$, $\operatorname{deg} \varphi(z)=3$ or 4 .

Remark: When $\operatorname{deg} \varphi \geqq 5$: hyperelliptic curve.

Recall: Elliptic integrals are reduced to

$$
\int R\left(x, \sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}\right) d x
$$

by means of fractional linear transformations.
The same is true for elliptic curves:
Any elliptic curves are isomorphic to

$$
\overline{\left\{(z, w) \mid w^{2}=\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)\right\}}{ }^{\text {compactification }}, \quad k \in \mathbb{C}
$$

as Riemann surfaces $=1$-dim. complex manifold.

Exercise*: Prove this.

In particular, any elliptic curve is homeomorphic to a torus.

Gluing of \mathbb{P}^{1} 's when $\operatorname{deg} \varphi=3: ~ \varphi(z)=a\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right)\left(z-\alpha_{3}\right)$.

Cuts are $\infty \alpha_{1}$ and $\alpha_{2} \alpha_{3}$.

