Лекция 5 (11 мая)

Содержание

1. Доказательство технической леммы о подстановке равных термов в термы и формулы. Ее следствие: в модели полной теории Хенкина, построенной из замкнутых термов $|\phi(t)| = |\phi(t)|$.

В дальнейшем все теории с равенством и модели нормальные.

- Теорема Лёвенгейма Сколема о повышении мощности: если теория Т в сигнатуре L имеет конечные модели неограниченной мощности и |L| ≤ k, то Т имеет модель мощности k.
- k-категоричность. Признак полноты Лося Вота: если теория Т в сигнатуре
 L не имеет конечных моделей и k-категорична для некоторого k ≥|L|, то Т
 полна.
- 4. Пример: теория DLO неограниченных плотных линейных порядков. Она \aleph_0 -категорична (теорема Кантора, см. лекцию 6).
- 5. Пример: теория бесконечных множеств в сигнатуре {=}. Она k-категорична для всех бесконечных k.
- 6. Пример: теория TFDA делимых абелевых групп без кручения в сигнатуре $\{+,0,=\}$. Она k-категорична для всех несчетных k.

План доказательства:

- (0) Модель этой теории является векторным пространством над Q.
- (1) Если модели изоморфны как группы, то они изоморфны как векторные пространства.
- (2) Теорема Хамеля: всякое векторное пространство имеет базис.
- (3) Если базис пространства V (над \mathbf{Q}) бесконечной мощности \mathbf{k} , то и V мощности \mathbf{k} .
- (4) Если базисы векторных пространств равномощны, то пространства изоморфны.