Elliptic Functions

Takashi Takebe

23 May 2016

- If there are errors in the problems, please fix reasonably and solve them.
- The rule of evaluation is:

$$
(\text { your final mark })=\min \left\{\text { integer part of } \frac{3}{2}(\text { total points you get }), 10\right\}
$$

- About twenty problems will be given till the end of the semester.
- This rule is subject to change and the latest rule applies.
- The deadline of $\mathbf{1 8}$ - 22: 30 May 2016. (You have one week, not two!) If you want the result to be reflected to your final evaluation, bring it (or send by e-mail) to Takebe till 25 May.

The periods of elliptic functions in this sheet is ω_{1} and ω_{2}. We denote the period lattice $\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ by Γ. The notations are the same as those in the lecture on 23 May 2016.
18. (1 pt.) (i) Show that $\wp^{\prime}\left(\frac{\omega_{i}}{2}\right)=0\left(i=1,2,3 ; \omega_{3}:=\omega_{1}+\omega_{2}\right)$.
(ii) Show that $e_{i}:=\wp\left(\frac{\omega_{i}}{2}\right)$ satisfy the following relations.

$$
e_{1}+e_{2}+e_{3}=0, \quad e_{1} e_{2}+e_{2} e_{3}+e_{3} e_{1}=-\frac{g_{2}}{4}, \quad e_{1} e_{2} e_{3}=\frac{g_{3}}{4} .
$$

19. (1 pt.) Let $\overline{\mathcal{R}}$ be the elliptic curve, which is the compactification of $\{(z, w) \mid$ $\left.w^{2}=4 z^{3}-g_{2} z-g_{3}\right\}$. Prove that the map defined by

$$
W: \mathbb{C} / \Gamma \ni u \mapsto\left(\wp(u), \wp^{\prime}(u)\right) \in \overline{\mathcal{R}}
$$

is an isomorphism of Riemann surfaces as follows. (In fact, this is the inverse of the Abel-Jacobi map $A J$.)
(i) Show that W is holomorphic (even at $u=0$) as a map to $\overline{\mathcal{R}}$. (Hint: In order to show that W is a holomorphic map in a neighbourhood of $u_{0} \in \mathbb{C} / \Gamma$, one should use u as a local coordinate of \mathbb{C} / Γ and choose an appropriate local coordinate of $\overline{\mathcal{R}}$ in a neighbourhood of $W\left(u_{0}\right)$.)
(ii) Show the bijectivity. (Hint: $\wp(u)$ is even and of order 2, i.e., takes any value $\in \mathbb{P}^{1}$ twice on \mathbb{C} / Γ. One also needs 18 (i) at several points.)
20. (1 pt.) Let $f(u)$ be an elliptic function.
(i) Suppose f is an even function and $\omega \in \Gamma$. Show that, if $f(\omega / 2)=0$ (resp. $\omega / 2$ is a pole of f), then $\omega / 2$ is a zero (resp. a pole) of even order.
(ii) Suppose f is an even function. Let $\left\{a_{1}, \ldots, a_{N}\right\}$ be the set of all distinct zeros in the period parallelogram and $\left\{b_{1}, \ldots, b_{M}\right\}$ be the set of all distinct poles. We denote the order of a_{i} (resp. b_{j}) by n_{i} (resp. k_{j}) and define the integers m_{i} and l_{j} as follows:

$$
m_{i}:=\left\{\begin{array}{ll}
n_{i} & \left(2 a_{i} \notin \Gamma\right), \\
n_{i} / 2 & \left(2 a_{i} \in \Gamma\right),
\end{array} \quad l_{j}:= \begin{cases}k_{j} & \left(2 b_{j} \notin \Gamma\right), \\
k_{j} / 2 & \left(2 b_{j} \in \Gamma\right)\end{cases}\right.
$$

Then there exists a complex number k such that

$$
f(u)=k \frac{\prod_{i=1}^{N}\left(\wp(u)-\wp\left(a_{i}\right)\right)^{m_{i}}}{\prod_{j=1}^{M}\left(\wp(u)-\wp\left(b_{j}\right)\right)^{l_{j}}} .
$$

(iii) Show that an odd elliptic function $f(u)$ is a product of $\wp^{\prime}(u)$ with a rational function of $\wp(u)$. Combining this result with (ii), show that an arbitrary elliptic function $f(u)$ is expressed as

$$
f(u)=R_{1}(\wp(u))+R_{2}(\wp(u)) \wp^{\prime}(u),
$$

where R_{1} and R_{2} are rational functions.
21.
(1 pt.) Show the following addition formula, using the differential equation of $\wp(u)$ and the proof of the addition formula in the lecture:

$$
\wp\left(u_{1}+u_{2}\right)=-\wp\left(u_{1}\right)-\wp\left(u_{2}\right)+\frac{1}{4}\left(\frac{\wp^{\prime}\left(u_{1}\right)-\wp^{\prime}\left(u_{2}\right)}{\wp\left(u_{1}\right)-\wp\left(u_{2}\right)}\right)^{2} .
$$

(Hint: u_{i} 's $\left(i=1,2,3\right.$; cf. the lecture on 23 May 2016 for u_{3}) satisfy

$$
\wp^{\prime}\left(u_{i}\right)^{2}=4 \wp\left(u_{i}\right)^{3}-g_{2} \wp\left(u_{i}\right)-g_{3}, \quad \wp^{\prime}\left(u_{i}\right)=a \wp\left(u_{i}\right)+b .
$$

Hence $\wp\left(u_{i}\right)$'s satisfy a cubic equation.)
22.
(1 pt.) Re-interpreting the proof of the addtion formula of $\wp(u)$ in the lecture, show that one can define an abelian group structure of the elliptic curve $\overline{\mathcal{R}}:=\overline{\left\{(z, w) \mid w^{2}=4 z^{3}-g_{2} z-g_{3}\right\}}$, as follows:
(i) The unit element \mathbf{O} is the point $\infty\left(=[0: 0: 1] \in \mathbb{P}^{2}\right)$.
(ii) Three points P_{1}, P_{2}, P_{3} on $\overline{\mathcal{R}}$ satisfy $P_{1}+P_{2}+P_{3}=\mathbf{O} . \Longleftrightarrow$ There exists a line passing through P_{1}, P_{2} and P_{3}.

