Elliptic Functions

Takashi Takebe

30 May 2016

- If there are errors in the problems, please fix reasonably and solve them.
- The solution of this sheet is not reflected to the evaluation. Therefore no deadline is set.

23.

(1 pt.) Show that an entire function $f(u)$ satisfying $f(u+1)=f(u), f(u+\tau)=$ $e^{b} f(u)(b \in \mathbb{C})$ is proportional to $e^{2 \pi i n u}$ for some $n \in \mathbb{Z}$. (Hint: Prove that, if a coefficient a_{n} in the Fourier expansion $f(u)=\sum a_{n} e^{2 \pi i n u}$ is not zero, then $\operatorname{Re} b=2 \pi n \operatorname{Im} \tau$. Therefore n is uniquely determined by b.)
24.
(1 pt.) Fix $k \in \mathbb{Z}_{>0}$ and $b \in \mathbb{C}$. Show that the dimension of the linear space $\Theta_{k, b}$ of all entire functions satisfying $f(u+1)=f(u)$ and $f(u+\tau)=$ $e^{-2 \pi i k u+b} f(u)$ is equal to k. Find a basis of $\Theta_{k, b}$ expressed by theta functions.
25. (1 pt.) Let a_{i} and $b_{i}(i=1, \ldots, N)$ be complex numbers satisfying $\sum a_{i}=$ $\sum b_{i}$. Show that a function of the form

$$
f(u)=c \frac{\theta_{11}\left(u-a_{1}\right) \cdots \theta_{11}\left(u-a_{N}\right)}{\theta_{11}\left(u-b_{1}\right) \cdots \theta_{11}\left(u-b_{N}\right)}
$$

$(c \in \mathbb{C})$ is an elliptic function with periods 1 and τ and that conversely any elliptic function with periods 1 and τ has this form.
26. (1 pt.) Prove the following formulae (Landen's transformation):

$$
\begin{aligned}
& \theta_{01}(2 u, 2 \tau)=\frac{\theta_{01}(0,2 \tau)}{\theta_{01}(0, \tau) \theta_{00}(0, \tau)} \theta_{00}(u, \tau) \theta_{01}(u, \tau), \\
& \theta_{11}(2 u, 2 \tau)=\frac{\theta_{01}(0,2 \tau)}{\theta_{01}(0, \tau) \theta_{00}(0, \tau)} \theta_{10}(u, \tau) \theta_{11}(u, \tau) .
\end{aligned}
$$

(Hint: Compare the zeros and quasi-periodicity of both sides. If the zeros and quasi-periodicity are the same, the ratio of them should be a holomorphic elliptic function. Apply Liouville's theorem. The constant in the first equation can be found easily. The second equation is derived from the first by shifting $u \mapsto u+\tau / 2$.)

