Representations of affine and vertex operator algebras
 Homework 1

1. Consider a representation of the Witt algebra with a basis $v_{k}, k \in \mathbb{Z}$:

$$
L_{n}\left(v_{k}\right)=(k-\alpha-\beta(n+1)) v_{k-n} .
$$

Express the action of the operators L_{n} in terms of the matrix units $E_{i, j}$ and compute the value of the japanese cocycle on the pairs L_{n}, L_{m}.
2. Using the previous problem, construct the structure of the module of the Virasoro algebra on the space $F^{(m)}$ via the $\widehat{\mathfrak{a}}_{\infty}$ action on $F^{(m)}$. Find the highest weight of this representation, i.e. the eigenvalues of the operators c and L_{0} on the vacuum vector $|m\rangle$.
3. Let B_{μ} be the Fock module of the Heisenberg algebra (\hbar acts as the identity operator and a_{0} acts via multiplication by μ). Consider the operators L_{n} :

$$
\begin{gathered}
L_{0}=\left(\mu^{2}+\lambda^{2}\right) / 2+\sum_{j>0} a_{-j} a_{j}, \\
L_{n}=\frac{1}{2} \sum_{j \in \mathbb{Z}} a_{-j} a_{j+n}+i \lambda n a_{n}, n \neq 0 .
\end{gathered}
$$

Prove that the operators L_{n} satisfy the Virasoro algebra relations and find the central charge.
4. Prove Proposition 3.7 from the book Kac, Raina. Bombay lectures on Highest-weight representations of infinite-dimensional Lie algebras.
5. Prove that any one-dimensional central extension of a simple Lie algebra is trivial.

