Representations of affine and vertex operator algebras Homework 2

1. Prove the equality $\exp (a \partial / \partial x) \exp (b x)=\exp (a b) \exp (b x) \exp (a \partial / \partial x)$.
2. Let $x_{j}=\frac{\varepsilon_{1}^{j}+\cdots+\varepsilon_{N}^{j}}{j}$. Prove that $S_{k}\left(x_{1}, x_{2}, . .,\right)$ is equal to the trace of the matrix $\operatorname{diag}\left(\varepsilon_{1}, \ldots, \varepsilon_{N}\right)$ in the $G L_{N}(\mathbb{C})$ module $S_{k}\left(\mathbb{C}^{N}\right)$.
3. Solve problem 2 for a general irreducible highest weight $G L_{N}$ module.
4. Prove that all finite-dimensional representations of the Witt algebra are trivial.
5. A vector v in a representation of the Virasoro algebra is called singular if $L_{n} v=0$ for all positive n. Find all singular vectors v in the Verma module $M_{c, h}$ such that: a). $\left.\left.L_{0} v=(h+1) v, \mathrm{~b}\right) . L_{0} v=(h+2) v, \mathrm{c}\right) . L_{0} v=(h+3) v$.
