Коники на проективной плоскости

- 1. Пусть \mathbf{k} поле характеристики char $\mathbf{k} \neq 2$, $A = (a_{ij}) \in M(3, \mathbf{k})$ ненулевая симметрическая матрица, и \mathbb{P}^2 проективная плоскость над полем \mathbf{k} с координатами $(x_0: x_1: x_2)$. Коникой в \mathbb{P}^2 называется множество $C = \{(x_0: x_1: x_2) \in \mathbb{P}^2 \mid \Phi(x) = 0\}$, где $\Phi(x) := \sum_{i,j=0}^2 a_{ij}x_ix_j = 0$. Матрицу A будем называть матрицей, задающей конику C. Коника C в \mathbb{P}^2 называется невырожеденной, если det $A \neq 0$, т. е. $\operatorname{rank} A = 3$. Проективной касательной прямой к конике C в точке $X \in C$ называется такая проективная прямая l в \mathbb{P}^2 , проходящая через точку X, что либо $l \subset C$, либо $l \cap C = \{X\}$.
- а) Докажите, что если коника $C \neq \emptyset$ невырождена, то в каждой точке $X \in C$ имеется единственная проективная касательная прямая к C, и она имеет с C единственную общую точку X.
- б) Для невырожденной коники C и произвольной точки $Y=(y_0:y_1:y_2)\in C$ обозначим через T_YC проективную касательную прямую к C в точке Y. Покажите, что T_YC задается линейным (по x) уравнением $\Phi(x,Y)=0$, где $\Phi(x,Y):=\sum_{i,j=0}^2 a_{ij}x_iy_j$, а (a_{ij}) матрица, задающая конику C.
 - 2. В обозначениях задачи 1 докажите, что:
- а) если ${\rm rank}A\leq 2$, где A матрица, задающая конику C, то существует точка $Y\in C$ такая, что имеется не единственная касательная проективная прямая к C в точке Y;
- б) если $\operatorname{rank} A = 2$, то вышеуказанная точка Y единственна, и найдите ее координаты; если при этом коника C имеет еще хотя бы одну точку Z, отличную от Y, то она распадается в объединение двух различных прямых, пересекающихся в точке Y, и одна из этих прямых проходит через Z;
- в) если $\operatorname{rank} A = 1$, то вышеуказанная точка Y есть любая точка коники C; при этом C есть проективная прямая l с уравнением, скажем, L(x) = 0, и квадратичная форма $\Phi(x)$ есть (с точностью до ненулевого множителя) квадрат линейной формы L(x). (В этом случае конику C называют $c\partial soe hoù npamoù <math>l$.)
- 3. Пусть C невырожденная коника в \mathbb{P}^2 , и $Y \in \mathbb{P}^2$ произвольная точка. Проективную прямую p_Y с уравнением $\Phi(x,Y)=0$ (см. определение $\Phi(x,Y)$ в задаче 1.6) назовем *полярой точки* Y относительно коники C.
- а) Пусть $Y \notin C$. Покажите, что $Y \notin p_Y$ и для произвольной прямой l, проходящей через точку Y и пересекающей поляру p_Y в точке Z, а конику C в паре различных различных точек A и B, четверка точек ABXY гармоническая.
- б) Пусть $Y \notin C$. Покажите, что если поляра p_Y пересекает конику C в паре различных точек P и Q, то прямые PY и QY касательные к конике C в точках P и Q соответственно, т. е. $PY = T_P C$ и $QY = T_Y C$.
 - в) Покажите, что если $Z \in p_Y$, то и $Y \in p_Z$.