Mathematical models of economic systems

Dr. Alexander Karpov

People are not logical. They are *psycho*logical. Anonymous

Introduction

Decision theory develops an economic model of a man.

Basic elements:

- Decision maker
- Set of alternatives (actions)
- States of the world
- Outcomes

Example 1

	Sunny	Rainy
Take an umbrella	3	2
Go without umbrella	4	1

Related disciplines

- Microeconomics; macroeconomics
- Finance
- Behavioral economics; experiments
- Neuroeconomics; neuromarketing
- Decision making among animals
- Game theory
- Social choice theory

Decision problem

Choose $x \in A \subseteq X$ to maximise V(x),

- objects of choice: $x \in X$,

- objective function: V(x),
- feasible choices: $A \subseteq X$.

Objects of choice, set X

- Consumption bundle
- Production plan
- Portfolios of K assets
- Number of children
- To cheat or not to cheat

What is *x*?

- A cold beer on a hot evening three days from now in the company of friends in an Islamic society that prohibits the consumption of alcohol.
- Time, social interactions, culture, tastes.
- All these things can be modeled by decision theory.

Evaluation of outcomes

- Utility function
- Profit function
- Expected utility function

Two approaches

Descriptive theory:

- How do people evaluate outcomes?
- What do people actually choose?

Normative theory:

- How should one decide?
- What advice should one give a decision maker?

Decision theory under certainty

Preferences as

- a reason of behavior and
- nothing more than a complete *description* of consistent behavior.

Decision theory under certainty

Definition: A *choice function* for a finite set X is a function $c : \mathcal{P}(X) \to \mathcal{P}(X)$ such that for all $A \subseteq X$, $c(A) \subseteq A$.

• A preference relation ≿ induces a choice set:

 $c_{\succeq}(A) := \{ x \in A \mid x \succeq y \text{ for all } y \in A \}.$

Note: if \succeq is acyclic then $c(A, \succeq) \neq \emptyset$.

Decisions under certainty

The preference order \succeq on X expresses the relation "at least as good as".

With every (weak) preference order one can associate

- (i) a strict preference relation ≻ on X defined by
 x ≻ y ⇔ x ≿ y and not y ≿ x,
- (ii) an *indifference relation* \sim on X defined by

 $x \sim y \Leftrightarrow x \succeq y \text{ and } y \succeq x.$

Revealed preferences

Weak Axiom of Revealed Preferences
 If x is ever chosen when y is available, then there
 is no set of alternatives for which y chosen and x
 is not.

Rational preference relation

Axiom A1: Completeness

For all $x, y \in X$,

either $x \succeq y$ or $y \succeq x$.

Axiom A2: *Transitivity*

For all $x, y, z \in X$,

 $x \succeq y \text{ and } y \succeq z \text{ imply } x \succeq z.$

Decisions under certainty

The preference order \succeq on X expresses the relation "at least as good as".

With every (weak) preference order one can associate

- (i) a strict preference relation ≻ on X defined by
 x ≻ y ⇔ x ≿ y and not y ≿ x,
- (ii) an *indifference relation* \sim on X defined by

 $x \sim y \Leftrightarrow x \succeq y \text{ and } y \succeq x.$

Representation

Theorem

The following statements are equivalent:

- (i) The preference order \succeq on X satisfies Axioms A1, A2,...
- (ii) There exists a function $V : X \to \mathbb{R}$ such that $x \succeq y \Leftrightarrow V(x) \ge V(y)$ for all $x, y \in X$. The function V is unique up to a monotone transformation.

Representation

• Every function $V: X \to \mathbb{R}$ induces an order on X.

For all $x, y \in X$, define

$$x \succeq y \quad \Leftrightarrow \quad V(x) \ge V(y).$$

When can a preference order ≿ be represented by a real-valued function, V : X → ℝ?

Axioms of preference order

Consider a set X and a preference order \geq on X.

Axiom A1: Completeness

For all $x, y \in X$,

either $x \succeq y$ or $y \succeq x$.

Axiom A2: Transitivity

For all $x, y, z \in X$,

 $x \succeq y \text{ and } y \succeq z \text{ imply } x \succeq z.$

Representation theorem

Because of a preference order \geq satisfies A1, A2, it is a weak order.

Proposition: If X is a finite set, then the following statements are equivalent:

(i) The preference order \succeq on X satisfies Axioms A1 and A2.

(ii) There exists a utility function $V : X \to \mathbb{R}$ which represents the preference order \succeq .

Proof

$1. \Longrightarrow \text{Let}$

$$V(x) := \#\{y \in X \mid x \succeq y\}.$$

V is a representation:

(a) If $x \sim x'$, then $\{y \in X | x \succeq y\} = \{y \in X | x' \succeq y\}$ and, hence, V(x) = V(x').

(b) If $x \succ x'$, then $\{y \in X | x' \succeq y\} \subset \{y \in X | x \succeq y\}$ and, hence, V(x) > V(x').

2. \Leftarrow V satisfies Axioms A1 and A2.

Uncountable set

Axiom A3a: Separability (\succeq -order density) There exists a countable set $Z \subseteq X$ which is \succeq -order-dense, i.e., for all $x, y \in X \setminus Z$ such that $x \succ y$, there exists a $z \in Z$ such that

 $x \succeq z \succeq y.$

Theorem (Cantor 1915).

The following statements are equivalent:

- (i) The preference order \succeq on X satisfies Axioms A1, A2, and A3a.
- (ii) There exists a function $V : X \to \mathbb{R}$ such that $x \succeq y \Leftrightarrow V(x) \ge V(y)$ for all $x, y \in X$.

Proof.

1. \Longrightarrow Forming equivalence classes for all $x \sim x'$, w.l.o.g, assume that $x \succ y$ for all $x, y \in \widehat{X}$.

Consider the subsets of the countable set $Z = \{z_1, z_2, z_3, ...\}$: $W(x|Z) := \{z_i \in Z | x \succeq z_i\} \subset Z,$ $B(x|Z) := \{z_i \in Z | z_i \succeq x\} \subset Z.$ The sets W(x|Z) and B(x|Z) are also countable.

Let

$$V(x) := \sum_{i \in \{i \mid z_i \in W(x|Z)\}} \frac{1}{2^i} - \sum_{i \in \{i \mid z_i \in B(x|Z)\}} \frac{1}{2^i}$$

V is a representation:

Let $x \succ y$, then

and $W(x|Z)\supseteq W(y|Z)$ $B(x|Z)\subseteq B(y|Z).$

Hence, for $x \succ y$,

$$V(x) - V(y) = \left(\sum_{i \in \{i \mid z_i \in W(x \mid Z)\}} \frac{1}{2^i} - \sum_{i \in \{i \mid z_i \in B(x \mid Z)\}} \frac{1}{2^i}\right) - \left(\sum_{i \in \{i \mid z_i \in W(y \mid Z)\}} \frac{1}{2^i} - \sum_{i \in \{i \mid z_i \in B(y \mid Z)\}} \frac{1}{2^i}\right) = \left(\sum_{i \in \{i \mid z_i \in W(x \mid Z)\}} \frac{1}{2^i} - \sum_{i \in \{i \mid z_i \in W(y \mid Z)\}} \frac{1}{2^i}\right) + \left(\sum_{i \in \{i \mid z_i \in B(y \mid Z)\}} \frac{1}{2^i} - \sum_{i \in \{i \mid z_i \in B(x \mid Z)\}} \frac{1}{2^i}\right) = \left(\sum_{i \in \{i \mid x \succeq z_i \succeq y\}} \frac{1}{2^i}\right) + \left(\sum_{i \in \{i \mid x \succeq z_i \succeq y\}} \frac{1}{2^i}\right) > 0,$$

since, by Axiom **3a**, there must be z_i such that

- either $x \succeq z_i \succ y$, • or $x \succ z_i \succeq y$, • or $x \succ z_i \succeq y$, • or $x \succ z_i \succ y$.
- 2. $\Leftarrow V$ satisfies Axioms A1, A2 (easy)

and A3 (difficult).

Uncountable sets X and continuous utility functions

Let X be a subset of a finite Euclidean space, $X \subseteq \mathbb{R}^n$.

For any $x \in X$, consider

the set of all y ∈ X which are better or equal than x,
 i.e.,

$$B(x) := \{ y \in X | y \succeq x \}$$

and

the set of all y ∈ X which are worse or equal than x,
 i.e.,

$$W(x) := \{ y \in X \mid y \preceq x \}.$$

Continuity

Axiom A3b: Continuity

For all $x \in X$,

B(x) and W(x) are *closed sets* in X. **Remark:** *Continuity* in Axiom **3b** is equivalent to the familiar notion of continuity:

(i)
$$x^n \in B(x)$$
 for all n and
(ii) $x^n \to x^0$
implies $x^0 \in B(x)$.

Representation theorem

Theorem (*Debreu 1952*) Suppose X is a subset of a finite Euclidean space, $X \subseteq \mathbb{R}^n$..

The following statements are equivalent:

- (i) The preference order \succeq on X satisfies Axioms A1, A2, and A3b.
- (ii) There exists a continuous function $V : X \to \mathbb{R}$ such that $x \succeq y \Leftrightarrow V(x) \ge V(y)$ for all $x, y \in X$.

Uniqueness

A function $\phi : \mathbb{R} \to \mathbb{R}$ is strictly increasing if for all $a, b \in \mathbb{R}, a \neq b$,

 $a > b \Longrightarrow \phi(a) > \phi(b).$

• Any function V representing a preference order \succeq is only unique up to positive monotone transformation.

Uniqueness

Proof.

Let $\phi : \mathbb{R} \to \mathbb{R}$ be a strictly increasing function,

then $W = \phi \circ V$ is also a function representing \succeq .

$$x \hspace{0.2cm} \succsim \hspace{0.2cm} y \Longleftrightarrow V(x) \geq V(y)$$

 $\iff W(x) = \phi(V(x)) \geq \phi(V(y)) = W(y)$

Examples: The following functions represent the same order \succeq on $X \subseteq \mathbb{R}^n$:

(i)
$$V(x) = \prod_{\substack{i=1\\n}}^{n} x_i^{\alpha_i}$$
,
(ii) $W(x) = \sum_{\substack{i=1\\i=1}}^{n} \alpha_i \cdot \ln x_i$,
(iii) $Z(x) = A + \left(\sum_{\substack{i=1\\i=1}}^{n} \alpha_i\right)^{-1} \sqrt[5]{\prod_{i=1}^{n} x_i^{\alpha_i}}$.

Utility functions that represent preferences are ordinal.

Other Axioms, $X \subseteq \mathbb{R}^n$

Axiom A4: local nonsatiation

For all $x \in X$ and all $\varepsilon > 0$ there exists $y \in X$ such that $|x - y| < \varepsilon$ and $y \succ x$.

Axiom A4': (weakly) monotone preferences

For all $x, y \in X$ with $y \gg x$ $y \succ x$. **Axiom A4'':** strongly monotone preferences

For all
$$x, y \in X$$
 with $y \ge x$ and $y \ne x$
 $y \succ x$.

Axiom A5: convex preferences

For all $x \in X$, $y, z \in B(x)$ and $\alpha \in [0, 1]$ $\Rightarrow \quad \alpha \cdot y + (1 - \alpha) \cdot z \succeq x$.

Axiom A5': strictly convex preferences

For all
$$x \in X$$
,
 $y, z \in B(x), y \neq z \text{ und } \alpha \in (0, 1)$
 $\Rightarrow \alpha \cdot y + (1 - \alpha) \cdot z \succ x.$

Quasi-concave utility functions:

A utility function $V : X \to \mathbb{R}$ is *quasi-concave*, iff for all $\alpha \in \mathbb{R}$ the set $\{x \in X | V(x) \ge \alpha\}$ is *convex* or *empty*. Denote by

$$I(x) := \{ y \in X | \ y \sim x \}$$
 the indifference set of $x \in X$.

Axiom A6: homothethic preferences

For all
$$x \in X$$
,
 $y \in I(x)$ and $\alpha \ge 0$
 $\Rightarrow \quad \alpha \cdot y \in I(\alpha \cdot x)$.