
ODE vs PDE (Comprison of Ordinary and Partial
differential equations)

1 Existence and uniqueness theorem for the ODE

2 Cauchy-Kovalevskaya theorem

3 Linear autonomous ODE and variables separation
method

Consider a linear autonomous ODE:

ẋ = Ax, x ∈ Rn, A : Rn → Rn (1)

a linear operator. The solutions form a linear space. If A has a real eigenbasis ξ1, ..., ξn
with the eigenvalues λ1, ..., λn, then the fundamental system of solutions (FSS, basis in the
space of solutions) has the form

ϕj(t) = eλjtξj. (2)

The Cauchy problem for equation (1) is:

ϕ(0) = x0, x0 ∈ Rn. (3)

The solution of the problem (1), (3) has the form:

x(t) = Σn
1cjϕj(t), (4)

where
x0 = Σn

1cjξ
j.

Consider now a PDE:
ut = Au, (5)

where A is a linear operator expressed through the drivatives in x. Let A have a real
eigenbasis X1, ..., Xn, ... with the eigenvalues λ1, ..., λn, .... Then the FSS has the form:

uj(t, x) = eλjtXj(x). (6)

The general solution has the form:

u(t, x) = Σ∞1 cje
λjtXj(x). (7)

We ignore here the convergence problems. The Cauchy problem for equation (5) is:

u(0, x) = f(x). (8)

1



The solution of the problem (5), (8) has the form (7) where

f(x) = Σ∞1 cjXj(x).

This a non-traditional justification of the variables separation method. If f belongs to a
space spanned by the first n eigenfunctions of A, then the second Cauchy problem turns
to be the same as the first one. Using the variables separation method we will solve heat,
wave and Laplace equations on the circle.

4 Heat equation
ut = ∆u. (9)

The Laplace operator ∆ on the circle is just taking the second derivative in x : ∆u = uxx.

Lemma 1 The Laplace operator on the circle has the eigenfunctions eikx, k ∈ Z with the
eigenvalues −k2.

Proof Solve Problem 1, List 1. �

Corollary 1 General solution of the heat equation on the unit circle has the form:

u(t, x) = Σk∈Zcke
ikx−tk2 , ck ∈ C, (10)

or
u(t, x) = a0 + Σk∈Ze

−tk2(ak cos kx+ bk sin kx), ak, bk ∈ R.

5 Wave equation
ut2 = ux2 , x ∈ S1. (11)

The same method provides a general solution:

u(t, x) = a0 + b0t+ Σk∈Z(ake
ikt+ikx + bke

−ikt+ikx), ak, bk ∈ C. (12)

6 Laplace equation
ut2 + ux2 = 0, x ∈ S1, t ∈ R. (13)

The same method provides a general solution:

u(t, x) = a0 + b0t+ Σk∈Z(ake
kt+ikx + bke

−kt+ikx), ak, bk ∈ C. (14)
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7 Cauchy problems
Cauchy problem for any of these equations is the union of the equation itself, and the initial
data. Initial data for the heat equation has the form:

u|t=0 = ϕ(x), x ∈ S1. (15)

Initial data for the wave and Laplace equations has the form:

u|t=0 = ϕ(x), ut|t=0 = ψ(x), x ∈ S1. (16)

8 Convergence problems
The general solution of the heat equation on the circle is (10). Suppose that it converges
at a point (t0, x0) with t0 < 0. Then

|ak| < Ce−k
2t0

for some C > 0. Here ak are Fourier coefficients of the initial data ϕ. This inequality fails
even for generic analytic functions ϕ. For such functions the solution (10) diverges for any
negative ϕ.

9 Enforced analitycity
Consider the Cauchy problem for the Laplace equation with the initial data ϕ =
Σake

ikx, ψ = 0. The solution is

u(t, x) = a0 + b0t+ Σk∈Zake
ikx ch kt.

Convergence at any point (t0, x0) with t0 6= 0 implies that

|ak| < Ce−kt0 .

Hence, ϕ is analytic. We conclude that the Cauchy problem above has a solution for analytic
initial data only.

These examples show the drastic difference between the Cauchy problems for ODE and
PDE, that is, between the finite and infinite dimensional phase space.
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