
1 Nonlinear equations

1.1 Jet space.

Consider an equation

Φ(x, u,Du) = 0, x ∈ Rn, n > 1. (1)

Definition 1 Let u be a function of x. Then for any x the tuple (x, u(x), Du(x)) is a 1-jet
of u at x.

The set of 1-jets of u for all x ∈ Ω (domain of u), is the 1-graph of u.

Proposition 1 The 1-graph of u is tangent to a hyperplane du− pdx = 0.

Proof Indeed,
du = Dudx = pdx.

�

1.2 Contact structures.

Definition 2 A contact structure on r2n+1 is a field of hyperplanes given by a one form
α such that ω = dα|α=0 is nondegenerate: for any ξ ∈ (α = 0) there exists η such that
ω(ξ, η) 6= 0.

α = du− pdx is an example of a contact structure.

Theorem 1 (Darboux) Any contact structure is smooth equivalent to a standard one

α = du− pdx.

1.3 Skew-scalar product in R2n.

Definition 3 A skew scalar product is a bi-linear skew symmetric non=degenerate form
on a linear space.

Definition 4 Non-degeneracy ⇒ a skew scalar product exists on R2n only.

Contact structure: ∃ on R2n+1 only. The contact structure defines a field of hyperplanes:
α = 0. A hyperplane of this field attached at a point a is defined by Πa.

Definition 5 A plane of dimension n skew orthogonal to itself is called Lagrangian.

Proposition 2 There exists no plane of dimension n + 1 in a 2n-symplectic space, skew
orthogonal to itself.
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1.4 Cauchy problem for non-linear first order PDE: an overlook.

Take an equation (1). It defines a surface E = E2n in the jet space. Suppose that it is
smooth.

Definition 6 A characteristic point a ∈ E is such that TaE = Πa.

Suppose that E has no characteristic points. At any point a ∈ E consider the contact
plane Πa and a form ω = dα = dp ∧ dx restricted to Πa. Note that (p, x) are coordinates
on Πa.

Let Pa = Πa ∩ TaE be the characteristic (2n− 1)-plane. Let L be a line field a 7→ la ∈
Pa such that la ⊥ Pa in sense of the skew-scalar product in Πa. (My tex has no “skew
orthogonal” symbol, so I use “orthogonal”, YuI). Integral curves of this field are called
characteristics of the surface E.

Theorem 2 Any 1-graph of a solution to (1) is saturated by the characteristics of the
corresponding surface E.

The initial data is as usual:
u|γ = ϕ. (2)

γ and ϕ are the same as before.
Solution to the Cauchy problem consists of three steps:

1. Lift the graph of the initial data to the surface E of the equation.

2. Saturate it by the characteristics of the surface E.

3. Project the 1-graph of the solution thus obtained to the (x, u) space, and thus obtain
the graph of the solution.

Remark 1 This construction proves uniqueness: if the solution exists, it is unique.
Existence requires more ideas.

2 Proof of Theorem 2
Proof The function is a solution to equation (1) iff its one-graph Γ belongs to E. Hence,
the tangent planes to Γ are Lagnangian, because Γ ⊂ Πa ∀a ∈ Γ, α|Γ ≡ 0. This implies that
for any two vectors ξ, η ∈ TaΓ, ω(ξ, η) = 0. Hence, ξ, η are skew orthogonal. But la is skew
orthogonal to Pa ⊃ TaΓ. Hence, the space spanned by TaΓ and la is skew orthogonal to
itself. If la 6∈ TaΓ, then the demension of this space is n+ 1, a contradiction. The Invariant
Manifold Lemma of Lecture 3 now implies the theorem. �
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3 Lift of the initial data
Any point x ∈ γ is lifted to E in the following way to (x, u,Du):

1. x is given

2. u = ϕ(x)

3. du|Txγ = dϕ

4. (x, u,Du) ∈ E.

This may be done sometimes, because δϕ provides n − 1 partial derivatives of u at x,
and the n-th one is found from the equation. We suppose that this may be done.

4 Solution to the Cauchy problem
We saturate the lift of the initial data by characteristics, and obtain the 1-graph of the
solution. The latter statement should be justified.

Theorem 3 The saturation of the lifted initial data by the characteristics near ant non-
characteristics point is tangent to the characteristic, hence, contact, planes.

This is non-sufficient for an n-surface to be a 1-graph. It is also needed that the
projection of this surface to the x-plane along the (u, p)-plane is bijective.

A point x ∈ γ is characteristic for the problem (1), (2) provided that the projection of
the characteristic line at the point (x, ϕ(x), p) of the graph of the lifted initial data along
the (u, p) plane is tangent to the initial surface at the point x. .

Theorem 4 In some neighborhood of any non-characteristic point, the problem (1), (2)
has a unique solution.

Proof The proof is given modulo Theorem 3. Let Γn−1 ⊂ E be the lifted initial data,
a = (x, ϕ(x), p) ∈ Γn−1, L be the saturation of Γn−1 by characteristics. Then the tangent
plane TaL is projected to Txγ ⊕ lx = TxRn, where lx is the projection of la to Rn. By the
inverse function theorem, L has the form: u = f(x), p = g(x). By Theorem 3, L is tangent
to the contact planes. Hence α|L = 0. That is, on L

du = pdx.

This implies that p = Du, and L is a 1-graph. �

Theorem 3 will be proved in the next lecture.
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5 Explicite form of the characteristic equation
Characteristic vector field for equation (1) has the form:

ẋ =Φp

ṗ =− (Φx + Φup)

u̇ =pΦp.

The proof may be found in the students lecture notes, or in the “Geometric methods...”
by Arnold.
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