1 Nonlinear equations

1.1 Jet space.

Consider an equation

$$
\begin{equation*}
\Phi(x, u, D u)=0, x \in \mathbb{R}^{n}, n>1 . \tag{1}
\end{equation*}
$$

Definition 1 Let u be a function of x. Then for any x the tuple $(x, u(x), D u(x))$ is a 1-jet of u at x.

The set of 1 -jets of u for all $x \in \Omega$ (domain of u), is the 1 -graph of u.
Proposition 1 The 1-graph of u is tangent to a hyperplane $d u-p d x=0$.
Proof Indeed,

$$
d u=D u d x=p d x .
$$

1.2 Contact structures.

Definition $2 A$ contact structure on $r^{2 n+1}$ is a field of hyperplanes given by a one form α such that $\omega=\left.d \alpha\right|_{\alpha=0}$ is nondegenerate: for any $\xi \in(\alpha=0)$ there exists η such that $\omega(\xi, \eta) \neq 0$.
$\alpha=d u-p d x$ is an example of a contact structure.
Theorem 1 (Darboux) Any contact structure is smooth equivalent to a standard one

$$
\alpha=d u-p d x .
$$

1.3 Skew-scalar product in $\mathbb{R}^{2 n}$.

Definition 3 A skew scalar product is a bi-linear skew symmetric non=degenerate form on a linear space.

Definition 4 Non-degeneracy \Rightarrow a skew scalar product exists on $\mathbb{R}^{2 n}$ only.
Contact structure: \exists on $\mathbb{R}^{2 n+1}$ only. The contact structure defines a field of hyperplanes: $\alpha=0$. A hyperplane of this field attached at a point a is defined by Π_{a}.

Definition 5 A plane of dimension n skew orthogonal to itself is called Lagrangian.
Proposition 2 There exists no plane of dimension $n+1$ in a $2 n$-symplectic space, skew orthogonal to itself.

1.4 Cauchy problem for non-linear first order PDE: an overlook.

Take an equation (1). It defines a surface $E=E^{2 n}$ in the jet space. Suppose that it is smooth.

Definition 6 A characteristic point $a \in E$ is such that $T_{a} E=\Pi_{a}$.
Suppose that E has no characteristic points. At any point $a \in E$ consider the contact plane Π_{a} and a form $\omega=d \alpha=d p \wedge d x$ restricted to Π_{a}. Note that (p, x) are coordinates on Π_{a}.

Let $P_{a}=\Pi_{a} \cap T_{a} E$ be the characteristic ($2 n-1$)-plane. Let L be a line field $a \mapsto l_{a} \in$ P_{a} such that $l_{a} \perp P_{a}$ in sense of the skew-scalar product in Π_{a}. (My tex has no "skew orthogonal" symbol, so I use "orthogonal", YuI). Integral curves of this field are called characteristics of the surface E.

Theorem 2 Any 1-graph of a solution to (1) is saturated by the characteristics of the corresponding surface E.

The initial data is as usual:

$$
\begin{equation*}
\left.u\right|_{\gamma}=\varphi \tag{2}
\end{equation*}
$$

γ and φ are the same as before.
Solution to the Cauchy problem consists of three steps:

1. Lift the graph of the initial data to the surface E of the equation.
2. Saturate it by the characteristics of the surface E.
3. Project the 1-graph of the solution thus obtained to the (x, u) space, and thus obtain the graph of the solution.

Remark 1 This construction proves uniqueness: if the solution exists, it is unique. Existence requires more ideas.

2 Proof of Theorem 2

Proof The function is a solution to equation (1) iff its one-graph Γ belongs to E. Hence, the tangent planes to Γ are Lagnangian, because $\Gamma \subset \Pi_{a} \forall a \in \Gamma,\left.\alpha\right|_{\Gamma} \equiv 0$. This implies that for any two vectors $\xi, \eta \in T_{a} \Gamma, \omega(\xi, \eta)=0$. Hence, ξ, η are skew orthogonal. But l_{a} is skew orthogonal to $P_{a} \supset T_{a} \Gamma$. Hence, the space spanned by $T_{a} \Gamma$ and l_{a} is skew orthogonal to itself. If $l_{a} \notin T_{a} \Gamma$, then the demension of this space is $n+1$, a contradiction. The Invariant Manifold Lemma of Lecture 3 now implies the theorem.

3 Lift of the initial data

Any point $x \in \gamma$ is lifted to E in the following way to $(x, u, D u)$:

1. x is given
2. $u=\varphi(x)$
3. $\left.d u\right|_{T_{x} \gamma}=d \varphi$
4. $(x, u, D u) \in E$.

This may be done sometimes, because $\delta \varphi$ provides $n-1$ partial derivatives of u at x, and the n-th one is found from the equation. We suppose that this may be done.

4 Solution to the Cauchy problem

We saturate the lift of the initial data by characteristics, and obtain the 1-graph of the solution. The latter statement should be justified.

Theorem 3 The saturation of the lifted initial data by the characteristics near ant noncharacteristics point is tangent to the characteristic, hence, contact, planes.

This is non-sufficient for an n-surface to be a 1 -graph. It is also needed that the projection of this surface to the x-plane along the (u, p)-plane is bijective.

A point $x \in \gamma$ is characteristic for the problem (1), (2) provided that the projection of the characteristic line at the point $(x, \varphi(x), p)$ of the graph of the lifted initial data along the (u, p) plane is tangent to the initial surface at the point x. .

Theorem 4 In some neighborhood of any non-characteristic point, the problem (1), (2) has a unique solution.

Proof The proof is given modulo Theorem 3. Let $\Gamma^{n-1} \subset E$ be the lifted initial data, $a=(x, \varphi(x), p) \in \Gamma^{n-1}, L$ be the saturation of Γ_{n-1} by characteristics. Then the tangent plane $T_{a} L$ is projected to $T_{x} \gamma \oplus l_{x}=T_{x} \mathbb{R}^{n}$, where l_{x} is the projection of l_{a} to \mathbb{R}^{n}. By the inverse function theorem, L has the form: $u=f(x), p=g(x)$. By Theorem 3,L is tangent to the contact planes. Hence $\left.\alpha\right|_{L}=0$. That is, on L

$$
d u=p d x
$$

This implies that $p=D u$, and L is a 1-graph.
Theorem 3 will be proved in the next lecture.

5 Explicite form of the characteristic equation

Characteristic vector field for equation (1) has the form:

$$
\begin{aligned}
\dot{x} & =\Phi_{p} \\
\dot{p} & =-\left(\Phi_{x}+\Phi_{u} p\right) \\
\dot{u} & =p \Phi_{p}
\end{aligned}
$$

The proof may be found in the students lecture notes, or in the "Geometric methods..." by Arnold.

