1 Changes of variables

1.1 Existence of solutions of the 1 order PDE's.

Lemma 1 The field of planes $\alpha=0$ on $E(\alpha \neq 0$ on $E)$ is invariant under the phase flow of a vector field v such that $\alpha(v)=0$, provided that for any ξ such that $\alpha(\xi)=0$, we have:

$$
d \alpha(v, \xi)=0
$$

Proof Let us rectify $v: v \equiv e_{1}$. Let $\alpha=\Sigma a_{j} d x_{j}$. As $\alpha(v) \equiv 0$, we have: $a_{1} \equiv 0$. As $\alpha \neq 0$ on $E, \forall x \exists j: a_{j}(x) \neq 0$. Let $j=2$. Take any other j, and let $\xi=\left(0,-a_{j}, 0, \ldots, a_{2}, 0, \ldots\right)$. Let $\partial a_{j} / \partial x=\dot{a}_{j}$. Then $d \alpha(v, \xi)=-\dot{a}_{2} a_{j}+a_{2} \dot{a}_{j}$. Hence, $\frac{a_{j}}{a_{2}}=$ const along v. The form α may change along the orbits of v, but the field $\alpha=0$ may not.

Existence is proved now in a few words.

1.2 Changes of variables in the operator.

Consider a change of variables $\xi=\xi(x)$.
The chain rule implies $D_{x} u^{t}=j^{*} D_{\xi} u^{t}$.
Consider a linear differential operator of the first order:

$$
L_{x} u=\left(\nabla_{x}, A(x) \nabla_{x}\right) u .
$$

After a change of variables, we have:

$$
L_{\xi} u=\left(J^{*} \nabla_{\xi}, A(x) J^{*} \nabla_{\xi}\right)=\left(\nabla_{\xi}, J A(x) J^{*} \nabla_{\xi}\right)+\text { lower terms }(\text { if } J \neq \text { const }) .
$$

The higher order terms are changed in the following way:

$$
A(x) \rightsquigarrow \tilde{A}=J(x) A(x) J^{*}(x) .
$$

Consider analogous formulas from algebra.

1.3 Change of variables in the quadratic form.

Let

$$
F_{A}(y)=(y, A y), y=C z .
$$

Then

$$
\tilde{F}(z)=(C z, A C z)=\left(z, C^{*} A C z\right)
$$

The formulas for \tilde{A} and \tilde{F} are similar, and this is used in practice.

1.4 Practice: $A=$ const.

Given L_{x} take $F_{A}=(y, A y)$. Bring it to the canonical form: $y=C z, \tilde{F}=(z, B z), B$ is a diagonal matrix with $0, \pm 1$ on the diagonal. Take a coordinate change $\xi=J x, J=C^{*}$. This change will take L to $\tilde{L}, \tilde{L}=\left(\nabla_{\xi}, B \nabla_{\xi}\right)$.

Classification:
$B=\operatorname{diag}(1, \ldots, 1) \rightsquigarrow$ elliptic case;
$B=\operatorname{diag}(-1,1, \ldots, 1) \rightsquigarrow$ hyperbolic case;
$B=\operatorname{diag}(0,1, \ldots, 1) \rightsquigarrow$ elliptic case.
This is not a complete classification; we do not name here other cases.

1.5 Preserving the Laplace operator by a linear map.

See Problem 2 from the List 5.

1.6 Case $n=2$.

Formula with matrixes $A(x) \rightsquigarrow \tilde{A}=J(x) A(x) J^{*}(x)$ for $n=2$ implies (check it!): if

$$
\begin{gathered}
L_{x} u=a u_{x^{2}}+2 b u_{x y}+c u_{y^{2}}+d u_{x}+f u_{y}, \\
(x, y)
\end{gathered}>(\xi, \eta), ~ \$ ~ \$
$$

then

$$
L_{\xi} u=\tilde{a} u_{\xi^{2}}+2 \tilde{b} u_{\xi \eta}+\tilde{c} u_{\eta^{2}}+\tilde{d} u_{\xi}+\tilde{f} u_{\eta},
$$

where

$$
\begin{gathered}
\tilde{a}=a \xi_{x}^{2}+2 b \xi_{x} \xi_{y}+c \xi^{2} y \\
\tilde{c}=\text { same for } \xi \rightsquigarrow \eta \\
\tilde{b}=a \xi_{x} \eta_{x}+b\left(\xi_{x} \eta_{y}+\eta_{x} \xi_{y}\right)+c \xi_{y} \eta_{y}
\end{gathered}
$$

In the hyperbolic case we wish: $\tilde{a}=0 \Leftrightarrow L_{v} \xi=0$, or $L_{w} \xi=0, v=\left(a, b+\sqrt{b^{2}-a c}\right), w=$ $\left(a, b-\sqrt{b^{2}-a c}\right)$. These are the characteristic equations, the orbits of v and w are called characteristics. Canonical form: $u_{\xi \eta}+$ l.o.t. $=0$.

First order coefficients: $\tilde{d}=L \xi, \tilde{f}=\tilde{\eta}$.

1.7 General solution for $u_{\xi \eta}=0$.
 $$
u=f(\xi)+g(\eta)
$$

1.8 General solution for $u_{t^{2}}=a^{2} u_{x^{2}}$.

See Problems 7, 8 from List 5 .

