1 Changes of variables

1.1 Existence of solutions of the 1 order PDE's.

Lemma 1 The field of planes $\alpha = 0$ on $E(\alpha \neq 0 \text{ on } E)$ is invariant under the phase flow of a vector field v such that $\alpha(v) = 0$, provided that for any ξ such that $\alpha(\xi) = 0$, we have:

$$d\alpha(v,\xi) = 0.$$

Proof Let us rectify $v : v \equiv e_1$. Let $\alpha = \sum a_j dx_j$. As $\alpha(v) \equiv 0$, we have: $a_1 \equiv 0$. As $\alpha \neq 0$ on E, $\forall x \exists j : a_j(x) \neq 0$. Let j = 2. Take any other j, and let $\xi = (0, -a_j, 0, \dots, a_2, 0, \dots)$. Let $\partial a_j / \partial x = \dot{a}_j$. Then $d\alpha(v, \xi) = -\dot{a}_2 a_j + a_2 \dot{a}_j$. Hence, $\frac{a_j}{a_2} = \text{const}$ along v. The form α may change along the orbits of v, but the field $\alpha = 0$ may not.

Existence is proved now in a few words.

1.2 Changes of variables in the operator.

Consider a change of variables $\xi = \xi(x)$.

The chain rule implies $D_x u^t = j^* D_{\xi} u^t$.

Consider a linear differential operator of the first order:

$$L_x u = (\nabla_x, A(x)\nabla_x)u$$

After a change of variables, we have:

$$L_{\xi}u = (J^*\nabla_{\xi}, A(x)J^*\nabla_{\xi}) = (\nabla_{\xi}, JA(x)J^*\nabla_{\xi}) + \text{ lower terms}(\text{ if } J \neq \text{const})$$

The higher order terms are changed in the following way:

$$A(x) \rightsquigarrow \tilde{A} = J(x)A(x)J^*(x).$$

Consider analogous formulas from algebra.

1.3 Change of variables in the quadratic form.

Let

$$F_A(y) = (y, Ay), \ y = Cz.$$

Then

$$\tilde{F}(z) = (Cz, ACz) = (z, C^*ACz).$$

The formulas for \tilde{A} and \tilde{F} are similar, and this is used in practice.

1.4 Practice: A = const.

Given L_x take $F_A = (y, Ay)$. Bring it to the canonical form: y = Cz, $\tilde{F} = (z, Bz)$, B is a diagonal matrix with $0, \pm 1$ on the diagonal. Take a coordinate change $\xi = Jx$, $J = C^*$. This change will take L to \tilde{L} , $\tilde{L} = (\nabla_{\xi}, B\nabla_{\xi})$.

Classification:

 $B = \text{diag}(1, ..., 1) \rightsquigarrow \text{elliptic case};$

 $B = \text{diag}(-1, 1, ..., 1) \rightsquigarrow \text{hyperbolic case};$

 $B = \text{diag}(0, 1, ..., 1) \rightsquigarrow \text{elliptic case.}$

This is not a complete classification; we do not name here other cases.

1.5 Preserving the Laplace operator by a linear map.

See Problem 2 from the List 5.

1.6 Case n = 2.

Formula with matrixes $A(x) \rightsquigarrow \tilde{A} = J(x)A(x)J^*(x)$ for n = 2 implies (check it!): if

$$L_x u = au_{x^2} + 2bu_{xy} + cu_{y^2} + du_x + fu_y,$$
$$(x, y) \rightsquigarrow (\xi, \eta),$$

then

$$L_{\xi}u = \tilde{a}u_{\xi^2} + 2\tilde{b}u_{\xi\eta} + \tilde{c}u_{\eta^2} + du_{\xi} + \tilde{f}u_{\eta}$$

where

$$\tilde{a} = a\xi_x^2 + 2b\xi_x\xi_y + c\xi^2 y$$
$$\tilde{c} = \text{ same for } \xi \rightsquigarrow \eta$$
$$\tilde{b} = a\xi_x\eta_x + b(\xi_x\eta_y + \eta_x\xi_y) + c\xi_y\eta_y$$

In the hyperbolic case we wish: $\tilde{a} = 0 \Leftrightarrow L_v \xi = 0$, or $L_w \xi = 0$, $v = (a, b + \sqrt{b^2 - ac})$, $w = (a, b - \sqrt{b^2 - ac})$. These are the characteristic equations, the orbits of v and w are called characteristics. Canonical form: $u_{\xi\eta} + 1$.o.t. = 0.

First order coefficients: $d = L\xi, f = \tilde{\eta}$.

1.7 General solution for $u_{\xi\eta} = 0$.

$$u = f(\xi) + g(\eta)$$

1.8 General solution for $u_{t^2} = a^2 u_{x^2}$.

See Problems 7, 8 from List 5.