Task 3: complex dynamics. Deadline: March 14

February 28, 2017

The Riemann-Hurwitz Formula. Let $\pi: S_{1} \rightarrow S_{2}$ be a branched covering of Riemann surfaces, where S_{1} and S_{2} are either both compact, or both compact with boundary, and let $A_{1}, \ldots, A_{k} \in S_{1}$ be its critical points. We consider that they do not lie in the boundary of the surface S_{1}. For every A_{j} the germ of the projection $\pi:\left(S_{1}, A_{j}\right) \rightarrow\left(S_{2}, \pi\left(A_{j}\right)\right)$ is a holomorphic mapping of the type $z \mapsto c_{j} z^{b_{j}+1}+o\left(z^{b_{j}+1}\right), c_{j} \neq 0, b_{j} \in \mathbb{N}$ in local coordinates centered at A_{j} and $\pi\left(A_{j}\right)$. The branching order of the covering π at A_{j} equals the number b_{j} : the local degree of the germ (the number of preimages of a point distinct from $\left.\pi\left(A_{j}\right)\right)$ minus one. Set $\chi\left(S_{i}\right)=$ the Euler characteristic of the surface $S_{i}, i=1,2 ; d=$ the degree of the covering π : the number of preimages of a point distinct from the critical values $\pi\left(A_{j}\right)$ (it is well-defined and finite by compactness). Then

$$
\begin{equation*}
\chi\left(S_{1}\right)=d \chi\left(S_{2}\right)-\sum_{j=1}^{k} b_{j} . \tag{1}
\end{equation*}
$$

Problem 1. Prove the Riemann-Hurwitz Formula (1).
Hint. Calculate the Euler characteristics of the surfaces S_{i} using their appropriate triangulations T_{i}. The critical values should be contained in the set of vertices of the triangulation T_{2}, and the triangulation T_{1} should be its pullback.
Problem 2. Show that there exist no branched covering $\pi: S_{1} \rightarrow S_{2}$ where
a) S_{1} is simply connected and S_{2} isn't;
b) S_{1}, S_{2} are finitely-connected domains in the Riemann sphere and the number of holes in S_{2} is bigger than that in S_{1};
c) S_{1}, S_{2} are compact Riemann surfaces and the genus of the source S_{1} is less than the genus of the image S_{2}.
Problem 3. Let S_{1}, S_{2} be either finitely-connected domains in the Riemann sphere with the same number of holes, or compact Riemann surfaces of the same positive genus. Then every branched covering $S_{1} \rightarrow S_{2}$ (if any) is a conformal isomorphism.
Problem 4. Prove that each connected component of the Fatou set is either simply-connected, or 2-connected (has one hole) and is conformally-equivalent to an annulus, or infinitely-connected (has infinite number of holes).
Problem 5. Prove that the number of components of the Fatou set may take only one of the three following values: $0,1,2, \infty$.
Problem 6. Prove that each connected component of the Fatou set of a polynomial that is different from the attracting basin of infinity is simply-connected: in particular a polynomial cannot have Herman rings.
Problem 7. Prove that the mapping $z \mapsto z^{2}-z$ sends the disk $D_{\frac{1}{2}}$ conformally onto the main cardioid: the component of the Mandelbrot set that corresponds to the quadratic polynomials $z^{2}+c$ having a (super) attracting fixed point. Deduce that the multiplier of the fixed point (considered as a function of c) conformally parametrizes the main cardioid by the unit disk.

