Task 1: almost complex structures. Deadline: February, 10

January 27, 2017

Problem 1. For every \mathbb{R}-linear operator $\mathbb{R}^{2} \rightarrow \mathbb{C}$ given below find its \mathbb{C}-linear and \mathbb{C}-antilinear parts, i.e., express it as $A(z)=a z+b \bar{z}$:
a) $A(x, y)=(x+2 y, 0)$;
b) $A(x, y)=(x, 2 y)$;
c) $A(x, y)=(x+y, y)$;
d) $A(x, y)=(2 x+y, x+y)$;
e) $A(x, y)=(2 y,-x)$;
f) Represent the above operators from b)-e) as $A(z)=\lambda(z+\mu \bar{z})$ and find μ.

Problem 2. Consider the standard linear complex structure $\sigma_{s t}$ on \mathbb{C}. For the above operators b)-e) find the anti-involution $J=J_{A}$ defining the pullback linear complex structure

$$
\sigma=\sigma_{A}=A_{*}^{-1} \sigma_{s t} .
$$

Problem 3. Find the ellipses defining the linear complex structures σ_{A} for the operators A from b)-e).
Problem 4. Find the dilatations of the above operators b)-e).
Problem 5. ${ }^{*}$ Let σ_{1} and σ_{2} be two linear complex structures on $\mathbb{R}^{2} \simeq \mathbb{C}$ respecting orientation. Let $\mu_{j} \in \mathbb{C},\left|\mu_{j}\right|<1, j=1,2$ be the complex numbers defining σ_{j}, i.e., $z \mapsto w_{j}=z+\mu_{j} \bar{z}$ is an \mathbb{R}-linear operator transforming σ_{j} to the standard complex structure $\sigma_{s t}$. Define the dilatation K of the structure σ_{2} with respect to σ_{1} to be its dilatation written in the complex coordinate w_{1} that is \mathbb{C}-linear for the structure σ_{1}. Prove that $\ln K$ equals the distance $\operatorname{dist}_{P}\left(\mu_{1}, \mu_{2}\right)$ in the Poincaré metric of the unit disk D_{1} : the pullback of the Lobachevsky-Poincaré metric $\frac{d x^{2}+d y^{2}}{y^{2}}$ on the upper half-plane $\mathbb{H}=\{I m z>0\}$ under a conformal isomorphism $D_{1} \simeq \mathbb{H}$.
Problem 6. Find the image $F_{*} \sigma_{s t}$ of the standard complex structure $\sigma_{s t}$ on \mathbb{C} under the following diffeomorphisms $F: \mathbb{C} \rightarrow \mathbb{C}$: more precisely, find the corresponding ellipse fields, \mathbb{C}-linear differentials, and functions μ.
a) $F(x, y)=(x, g(y)$, where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a diffeomorphism;
b) $F(x, y)=(f(x), g(y))$, where $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are diffeomorphisms;
c) $F(x, y)=(x+f(y), g(y))$, where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a diffeomorphism and $f: \mathbb{R} \rightarrow \mathbb{R}$ is smooth;
d) $F(r, \phi)=(r, \phi+\psi(r))$, where $\psi(r)$ is smooth as a function in r^{2}.

Problem 7. * Consider an almost complex structure σ on \mathbb{C} given by a function μ depending only on the coordinate $y: \mu=\mu(y)$. Find a diffeomorphism $F: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ transforming σ to the standard complex structure.

