Task 1: almost complex structures. Deadline: February, 10

January 27, 2017

Problem 1. For every \mathbb{R} -linear operator $\mathbb{R}^2 \to \mathbb{C}$ given below find its \mathbb{C} -linear and \mathbb{C} -antilinear parts, i.e., express it as $A(z) = az + b\overline{z}$:

- a) A(x, y) = (x + 2y, 0);b) A(x, y) = (x, 2y);c) A(x, y) = (x + y, y);d) A(x, y) = (2x + y, x + y);e) A(x, y) = (2y, -x);
- f) Represent the above operators from b)–e) as $A(z) = \lambda(z + \mu \bar{z})$ and find μ .

Problem 2. Consider the standard linear complex structure σ_{st} on \mathbb{C} . For the above operators b)–e) find the anti-involution $J = J_A$ defining the pullback linear complex structure

$$\sigma = \sigma_A = A_*^{-1} \sigma_{st}.$$

Problem 3. Find the ellipses defining the linear complex structures σ_A for the operators A from b)–e).

Problem 4. Find the dilatations of the above operators b)–e).

Problem 5. * Let σ_1 and σ_2 be two linear complex structures on $\mathbb{R}^2 \simeq \mathbb{C}$ respecting orientation. Let $\mu_j \in \mathbb{C}$, $|\mu_j| < 1$, j = 1, 2 be the complex numbers defining σ_j , i.e., $z \mapsto w_j = z + \mu_j \bar{z}$ is an \mathbb{R} -linear operator transforming σ_j to the standard complex structure σ_{st} . Define the *dilatation* K of the structure σ_2 with respect to σ_1 to be its dilatation written in the complex coordinate w_1 that is \mathbb{C} -linear for the structure σ_1 . Prove that $\ln K$ equals the distance $dist_P(\mu_1, \mu_2)$ in the Poincaré metric of the unit disk D_1 : the pullback of the Lobachevsky–Poincaré metric $\frac{dx^2+dy^2}{y^2}$ on the upper half-plane $\mathbb{H} = \{Imz > 0\}$ under a conformal isomorphism $D_1 \simeq \mathbb{H}$.

Problem 6. Find the image $F_*\sigma_{st}$ of the standard complex structure σ_{st} on \mathbb{C} under the following diffeomorphisms $F : \mathbb{C} \to \mathbb{C}$: more precisely, find the corresponding ellipse fields, \mathbb{C} -linear differentials, and functions μ .

a) F(x,y) = (x,g(y)), where $g : \mathbb{R} \to \mathbb{R}$ is a diffeomorphism;

b) F(x,y) = (f(x), g(y)), where $f, g : \mathbb{R} \to \mathbb{R}$ are diffeomorphisms;

c) F(x,y) = (x + f(y), g(y)), where $g : \mathbb{R} \to \mathbb{R}$ is a diffeomorphism and $f : \mathbb{R} \to \mathbb{R}$ is smooth;

d) $F(r, \phi) = (r, \phi + \psi(r))$, where $\psi(r)$ is smooth as a function in r^2 .

Problem 7. * Consider an almost complex structure σ on \mathbb{C} given by a function μ depending only on the coordinate $y: \mu = \mu(y)$. Find a diffeomorphism $F: \mathbb{C}^2 \to \mathbb{C}^2$ transforming σ to the standard complex structure.