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Attention model
Masatlioglu, Nakajima, Ozbay 2012

* The revealed preference argument relies on
the implicit assumption that a decision maker
(DM)considers all feasible alternatives.
Without the full consideration assumption,
the standard revealed preference method can

oe misleading. It is possible that the DM

orefers x to y but she chooses y when x is

oresent simply because she does not realize
that x is also available.




* For example, while using a search engine, a
DM might only pay attention to alternatives
appearing on the first page of the results since
it takes too much time to consider all the
search results. She then picks the best
alternative of those on the first page, say y. It
is possible that her most preferred item, x,
does not appear on the first page.



Attention filters

* |t has been argued that due to cognitive
limitations, DMs cannot pay attention to all
the available alternatives.

* A consideration set mapping ' is an attention
filter if for any s, I(s) = I'(s\x)whenever x&[(s).

* This definition says that if an alternative does
not attract the attention of the decision
maker, her consideration set does not change
when such an item becomes unavailable.



* Suppose she knows S is her entire feasible set.
Then, she picks her consideration set '(s) based
optimally on her prior beliefs about the value of
alternatives and the cost of inspecting them.

* A choice function cis a choice with limited
attention (CLA) if there exists a complete and
transitive preference > over X and an attention
filter I such that c(s) is the > - best element in
[(s).



Attention filters

Top N: A DM considers only top N alternatives
according to some criterion that is different from
her preference.

Top on each criterion: A DM has several criteria and
considers only the best alternative(s)on each
criterion (modeled as a complete and transitive
binary relation).

Most popular category: A DM considers alternatives
that belong to the most popular “category” in the
market.



TABLE 1—Two PosSIBLE REPRESENTATIONS FOR THE CycLiCcAL CHOICE

Attention filter

Preference {x,y,2 {x,y} {v,2} {x,z
2= X >y I Xy Xy y X7
X,y 52 I, Xyz Xy ¥z Z

c(xyz) = x, clxy) = x, c(yz) =y c(xz)
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Example

There are four products x, y, z, and t. Each of them is packed in
a box. Consider a supermarket that displays these products
in its two aisles according to the following rules:

(i)Each aisle can carry at most two products;

(i) x and y cannot be placed into the same aisle because they
are packed in big boxes;

(iii)The supermarket fills the first aisle first and uses the
second aisle only if it is necessary;

(iv) y and z are put into the first aisle whenever they are
available;

(v) tis placed in the first aisle only after all other available
items are put in an aisle and the first aisle still has a space.



Example

* Consider a costumer with preference t>x>z>y
(not observable) and she visits only the first aisle
and picks her most preferred item displayed in
that aisle.

e Suppose all of four products are available. Then, y
and z are placed in the first aisle, so z is chosen.
When y becomes unavailable, then x is moved to
the first aisle and is chosen. Furthermore, when z
is also sold out, then x and t are placed in the first
aisle, so she picks t. In sum, her choices will be c(x
vzt)=zc(xzt)=xandc(xt) =t.



DEFINITION 3: Assume c is a choice by limited attention and there are k different
pairs of preference and attention filter representing c, (I'y, =), (I's, =2), ..., (T, =1).
In this case,

* x is revealed to be preferredto y if x =y for all i,
 x is revealed to attract attention at S if I';(S) includes x for all i,
* x is revealed not to attract attention at S if I'; (S) excludes x for all i.



Stochastic Choice and Consideration
Sets. Manzini, Mariotti, 2014

* We consider a boundedly rational agent who
maximises a preference relation but makes random
choice errors due to imperfect attention.

* The source of choice errors in our model is the
agent’s failure to consider all feasible alternatives.
For example, a consumer buying a new PC is not
aware of all the latest models and specifications; a
time-pressured doctor overlooks the relevant
disease for the given set of symptoms; an
ideological voter deliberately ignores some
candidates independently of their policies.



Model

Once a consideration set C (A) has been formed, a final
choice is made by maximising a preference relation
over C (A), which we assume to be standard (complete
and transitive).

Each alternative a is considered with a probability y(a),
the attention parameter relative to alternative a. For
example, y(a) may indirectly measure the degree of
brand awareness for a product, or the willingness of an
agent to seriously evaluate a political candidate.

The assumption that y(a) is menu independent is a
substantive one.



Model

 We allow the agent not to pick any alternative
from a menu, so we also assume the existence
of a default alternative a* (e.g. walking away
from the shop, abstaining from voting,
exceeding the time limit for a move in a game
of chess).

 Denote X*= X U{a*} and A*= A U {a*} for all A.



Random choice rule

* p(a; A) denotes the probability that the
alternative aeA* is chosen when the possible
choices (in addition to the default a*) faced by
the agent are the alternatives in A. Note that
a*™ is the action taken when the menu is

empty, so that p(a*; @) = 1.



Random consideration set rule

 Arandom consideration set rule is a random
choice rule, for which there exists a pair (>;y),
where > is a strict total orderon X and y is a
map y: X —(0; 1), such that

P~ (a, A) =7 (a) H (1 —~(b)) forall A€ D, forallac A

beA:b>a



Theorem

A random choice rule satisfies i-Asymmetry and i-
Independence if and only if it is a random consideration set
rule p. .. Moreover, both > and y are unique, that is, for any
random choice rule p,. . such that rule p_.,, =p we have
(>%y)= (>7).

i-Asymmetry says that if b is not neutral for a in a menu, then
a must be neutral for b in the same menu. Note how this
axiom rules out randomness due to ‘utility errors’, while it is
compatible with ‘consideration errors’. It is a stochastic
analog of a property of rational deterministic choice: if the
presence of b determines whether a is chosen, then b is

better than a, and therefore the presence of a cannot
determine whether b is chosen.

i-Independence states that the impact of an alternative on
another cannot depend on which other alternatives are
present in the menu.



Menu-Dependent Stochastic Feasibility
Brady and Rehbeck, 2016

Consider a researcher with scanner data on consumer
choice from repeated visits to a grocery store. In
addition, each store supplies the researcher with the
list of offered alternatives. However, there is random
variation of alternatives available to consumers that
is unknown to the researcher. For example, the
researcher may not know if alternatives were sold
out, a delivery was delayed, or an aisle was closed. A
rational consumer’s choices will depend on the
available alternatives. Therefore, random variation in
availability will cause a rational consumer’s choices to
appear stochastic to the researcher. Hence, stochastic
feasibility induces a stochastic choice function.




Random Conditional Choice Set Rule (RCCSR)

We consider a full support probability
distribution it on D. Thus, there is a positive
probability each A €D is feasible. We call F(A)
the feasible set. When D = 2%, t(A) represents the
probability that A is feasible in X. For a menu A,
the probability of facing the feasible set B €A is

~ 7©(B)
ZCC_:A?T(C).
If B is not a subset of A, then Pr(F(A) = B) = 0.

Thus, the probability of facing a given feasible set
is conditioned on the offered menu.

Pr(F(A) = B)



Random conditional choice set rule

 We allow F(A) to be empty, in which case the
agent chooses the default option x *.

Therefore, P(x*A) is the probability that F(A)
IS empty.



Random conditional choice set rule

A random conditional choice set rule (RCCSR) is a
random choice rule P _  for which there exists a pair
(>,m), where > is a strict preference ordering
onXandm:D - (0, 1) a full support probability
distribution over D, such that for all A €D and for all

a€eA
ZBEA.@ m(B)
ch,q m(C)
Thus, P . .(a,A) is the probability that a is the best
item available when offered menu A. Menu-

dependence is clear since Pr(F(A) = B) is conditioned
on the subsets of the offered menu.

P}?ﬂ-(@j A) —




Sequential independence

* Let the default option be x* _X. The default option
is available for each menu and%an be interpreted as
“not chosen”. When the menu is empty, the default
option x *is always chosen, so P(x* @) = 1.

We say that alternative b is sequentially independent
from alternative a in menu {a,b} if

P(b, A)=P(b, A\ {a})P(A*\ {a}, A).

the term P(Ax \{a}A) is the probability a is not
available in A.



Sequential independence

 We see that the probability b is chosen from
the set A \ {a} is the same as the probability b
is chosen from A conditional on a being sold
out.

P(b, A)
— P(a, A)

P(b, A\ {a}) = -



|dentification

* Now suppose that choice data is generated by
an RCCSR. We focus on how to recover rt(-).
First, consider the case that D = 2X. We note
that (&) = P(x* X) since x*is chosen when
the feasible set is empty and probabilities are
unconditional in X. Using this, for an arbitrary
singleton menu of a €X we have

Pl {a}) = O r({a}) = LX)

({a}) +7(0) Plav {ay) L)




Example (Grocery Store)

Consider a researcher with scanner data of a
consumer from several grocery stores. The
alternatives of interest are apples (a), bananas (b),
and carrots (c). Here the set of alternatives is X = {a,
b, c} and D = 2X. Suppose we observe choice from
all possible nonempty menus given by Table 1.
Table 1: Grocery Store Stochastic Choice Data

{a,b,c} | {a,b} | {a,c} | {b,c} | {a} | {0} | {c]
a|7/20 |1/3 |[1/2 |0 1/210 |0
11/20 | 1/2 |0 11/13 |0 | 3/4 0
¢c|11/20 |0 1/4 |1/13 |0 |0 |1/2




* |t would be reasonable to think correlation
exists between which objects are feasible.
Correlation would mean that Pr(aeF(A)|/bé&
F(A))#Pr(a € F(A)) for some a, b €A with a #b.
We note that a random consideration set rule
does not allow these effects.

* One can use this data and our revealed
preference relation to find that a > b > c and
that the it system is given by

1 3 1
m(0) = 5= w({a}) = 20 m({0}) = 20 m({c}) = 20

({ab) = oo ml{ach) = oo w({beh) = o w({abel) = oo



e Suppose that a researcher observes b is available
when the agent chooses from X. Now, the
researcher can back out the probability that a
was also in the feasible set since

m({a,b}) + 7({a, b, c}) D

~ 7({a, b)) + 7({a,b,c}) + 7({b,c}) + 7 ({b}) 16

* but P(a €F(X)) =7/20. This may suggest that
apples and bananas are substitutes since apples
are less likely to be available given bananas are
still available.

Pla € F(X)|be F(X))




Random choice as behavioral optimization
Gul, Natenzon, Pesendorfer, 2014

Subjects routinely violate the weak axiom of
revealed preference. Often, these violations
occur in a manner inconsistent with any
deterministic theory.

In fact, empirical and experimental studies almost
always interpret individual choice behavior as
probabilistic.



Behavioral optimization

* Gul, Natenzon, Pesendorfer, 2014 explore random
choice as a theory of behavioral optimization, that
is, not as a model of measurement error but as a
model of a consumer whose rationality is
constrained by behavioral limitations such as
limited cognitive abilities or limited attention.



The Luce rule

* Each option s has a Luce value, v, so that the
probability of choosing s from a set A
containing s is

Uy
J(A) = :
ps(A) th

te A



The Luce rule

 We can interpret the Luce value as a measure
of desirability: s is stochastically preferred to t
if, for any set A that contains neither s nor t,
the agent is more likely to choose s from A U
{s} than t from A U {t}. Luce values represent
this stochastic preference: s is stochastically
preferred to t if and only if v, > v..



Systematic violations

of the Luce model

Debreu (1960) anticipated the best known violation
and identified the main shortcoming of Luce’s model:
consider two items s, and s, that are very similar (a
yellow bus and a red bus) and a third dissimilar option
t (a train). Then, it may be that each item is chosen
with probability 1/2 from every two-element subset of
{s; s, t}, but tis chosen from {s1 s2 t} more frequently
than each of the other two options. It is easy to check
that this behavior cannot be generated (nor
approximated) by any Luce rule. The problem that
Debreu’s example identifies is more generally referred
to as the “duplicates problem” in the discrete choice
estimation literature.



Attribute rule

This model, the attribute rule, addresses the
shortcomings of the Luce model but retains Luce’s
idea that choice is governed by desirability values. It
does so by reinterpreting the choice objects as
bundles of attributes. Attributes, or at least their
relevance, are subjective; they are properties of the
decision maker and not of the choice objects.

Let Z be the collection of attributes, let X, be the set
of attributes that s has and

X(A) = UseA X,.



Attribute rule
Let X(A):={xeZ]|n*(A)>0}forall Ae A..

An attribute value is a function w : Z - R++ that
measures the desirability of attribute x.

w(X) ‘= erX Wy
We say that n is simple if it is equal to O or 1 for
all x,s. The choice rule p is a (complete) attribute
rule if there exists a (complete) attribute system
(w, n) such that

Wy M,
ps(A) — T .
x;@ w(X(A) 7*(A)




* |n an attribute rule, the decision maker first
chooses a relevant attribute according to a
Luce-type formula and then picks one option
that has that attribute according to another
Luce-type formula. The attribute rule reduces
to a Luce rule when no pair of alternatives
shares a common attribute.



Example

Let A ={r,s,t} and assume there are three
attributes, Z ={1, 2, 3}. Each attribute value is 1,
that is, w, = 1 for all x € Z. Option r has attributes

1, 3, s has attributes 1, 2, and t has attributes 2, 3.
In particular, . =’ =70’ =4, n’ =9l = n* =1,
and n* = n? = n; = 0. This attribute system
represents the choice rule p such that

p.({r, s}) = ps({s, 1}) = p.({r, t}) = 3/5.



Problem 1

Let X be a finite set. A random choice function is a function P : 2% \ §) — [0,1]* such
that P(A)(z) > 0 and ) ., P(A)(a) = 1. For notational ease, let P4 = P(A). That is, a
random choice function takes a menu of options and outputs a probability distribution over
the menu, where P4(z) denotes the probability that z is chosen from menu A.

A random choice function admits a Luce representation if there exists a set of weights
{w(z) > 0: 2 € X} such that

& fre A
Pa(z) = { Zecav@ =7
0 ifxd¢ A

A random choice function satisfies Random Independence of Irrelevant Alternatives

if
Py(x) _ Pp(z)

Pa(y)  Psly)
whenever Pa(z). Pa(y), Pr(z), Pr(y) > 0.




Problem from
http://eml.berkeley.edu/~dahn/ProblemSet1.pdf

(b) Prove or provide a counterexample to the following statement: If P admits a Luce
representation, then it satisfies Random IIA.

(c) Suppose P4(a) > 0 whenever a € A. Prove that if P satisfies Random IIA, then P
admits a Luce representation. (Hint: Consider a candidate for w.)

d) For A, B C X, define P4(B) as P4(B). Suppose that P admits a Luce represen-
beB
tation. Prove that if C' C B C A, then P4(C) = Pp(C)Pa(B). Interpret this condition.



Problem 2

* Consider "Stochastic Choice and Consideration
Sets. Manzini, Mariotti, 2014" model. Assume
that preference relation is not a linear order, but
a weak order. If consideration set consist of
several indifferent alternatives then DM chooses
one of them with equal probabilities.

e Rationalise examples from "Random choice as
oehavioral optimization. Gul, Natenzon,
Pesendorfer, 2014" by generalised Manzini-
Mariotti model.




Examples

EXAMPLE 5: To define an attribute rule that is consistent with Example 3
above, let Z = {x, y}, where x = A is the bus-attribute and y = {¢} is the train-
attribute. Let w, = 3, w, =2 and let i be the simple intensity such that nf =1
if and only if s € x = A and nY =1 1f and only if s = ¢. Then, p,({s;, £}) = 0.6
and p;, (At) = 0.2, as required.

EXAMPLE 6: For an attribute rule that i1s consistent with Example 4, let
Z = {x,y}, where x = {r,s} and y = {r, t}. Set w, = w, =1 and let n be
the simple attribute intensity such that n* = n* = 1, n = n; = 1. Then,
p-({r, s}) = p,({r, t}) =3/4 and p,({r, 5, t}) = 1/2, as required.

* Example 8

p-({r51) = ps(ls, 1)) = pu({r, 1) = 3/5.



Problem 3

Consider example from Manzini, Mariotti, 2014

Example 2 Let v (a) = 5, v(b) = 5 and v (c) = 15 with a = b > c. We have:

2
1
ph’Y(ba{brc}) - 5

95 1
Pry (e {a,c}) = 100 9
but also
15 5! 1
b{a,b})=--=— <=
p>‘,"/( ?{a’? }) 29 18 < 2

violating Weak stochastic transitivity.

s it possible to rationalise this choice by Gul,
Natenzon, Pesendorfer, 2014 model?



