Recitation 4. Symplectic structures and non-linear equations

Liner algebra digression

- 1. A skew scalar product in any basis is given by a skew-symmetric matrix
- 2. A skew symmetric matrix of order two is equivalent to $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$
- 3. A non-degenerate skew product is equivalent to $dp_1 \wedge d_1 + \cdots + dp_n \wedge dq_n = dp \wedge dq$ in multiple notation
- 4. $dp \wedge dq(\xi, \eta) = \sum_{1}^{n} A_{j}$, where A_{j} is the area of the projection of the parallelogram spanned by ξ, η to the $(\frac{\partial}{\partial p_{j}}, \frac{\partial}{\partial q_{j}})$ plane.
- 5. A non-degenerate skew scalar product exists in an even-dimensional space only.
- 6. If all the vectors of a subspace of a symplectic 2n-space are mutually skew orthogonal then the dimension of this subspace is no greater than n.

Non-linear PDE of the first order

- 7. Derive the characteristic equation for a linear first order PDE from the general characteristic equation.
- 8. Same for quasilinear PDE
- 9. Investigate existence and uniqueness of a solution of a problem

$$(Du)^{2} := (u_{x})^{2} + (u_{y})^{2} = 1$$
(1)

with the initial condition

$$u|_{y=x^2} = 0$$

in the domains a) $y < x^2$, b) $y > x^2$.

- 10. Find the curve that bounds the domain of the sulution in Problem a).
- 11. The same for equation (??) with the initial condition $u|_{\gamma} = 0$, $\gamma = (\frac{x}{a})^2 + (\frac{y}{b})^2 = 1$.
- 12. Lift the initial condition $u|_{\Gamma} = 0$ for the equation

$$(Du)^2 = 1 \tag{2}$$

to the surface of the equation.

- 13. What is the geometric meaning of a solution of the (??) in \mathbb{R}^n with the initial condition $u|_{\gamma} = 0$ for a smooth surface γ ?
- 14. Find the maximal t_0 for which a solution of the problem $u_t + uu_x = \sin x$ is defined for $|t| < t_0$, $u|_{t=0} = 0$.

Solved in the class: 1, 2, 12.

HW: 3, 5 - 10.