Recitation 4. Symplectic structures and non-linear equations

Liner algebra digression

1. A skew scalar product in any basis is given by a skew-symmetric matrix
2. A skew symmetric matrix of order two is equivalent to $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
3. A non-degenerate skew product is equivalent to $d p_{1} \wedge d_{1}+\cdots+d p_{n} \wedge d q_{n}=d p \wedge d q$ in multiple notation
4. $d p \wedge d q(\xi, \eta)=\sum_{1}^{n} A_{j}$, where A_{j} is the area of the projection of the parallelogram spanned by ξ, η to the $\left(\frac{\partial}{\partial p_{j}}, \frac{\partial}{\partial q_{j}}\right)$ plane.
5. A non-degenerate skew scalar product exists in an even-dimensional space only.
6. If all the vectors of a subspace of a symplectic $2 n$-space are mutually skew orthogonal then the dimension of this subspace is no greater than n.
Non-linear PDE of the first order
7. Derive the characteristic equation for a linear first order PDE from the general characteristic equation.
8. Same for quasilinear PDE
9. Investigate existence and uniqueness of a solution of a problem

$$
\begin{equation*}
(D u)^{2}:=\left(u_{x}\right)^{2}+\left(u_{y}\right)^{2}=1 \tag{1}
\end{equation*}
$$

with the initial condition

$$
\left.u\right|_{y=x^{2}}=0
$$

in the domains a) $y<x^{2}$, b) $y>x^{2}$.
10. Find the curve that bounds the domain of the sulution in Problem a).
11. The same for equation (??) with the initial condition $\left.u\right|_{\gamma}=0, \gamma=\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1$.
12. Lift the initial condition $\left.u\right|_{\Gamma}=0$ for the equation

$$
\begin{equation*}
(D u)^{2}=1 \tag{2}
\end{equation*}
$$

to the surface of the equation.
13. What is the geometric meaning of a solution of the (??) in \mathbb{R}^{n} with the initial condition $\left.u\right|_{\gamma}=0$ for a smooth surface γ ?
14. Find the maximal t_{0} for which a solution of the problem $u_{t}+u u_{x}=\sin x$ is defined for $|t|<t_{0},\left.u\right|_{t=0}=0$.

Solved in the class: $1,2,12$.
HW: 3, 5-10.

