Recitation and HW 6. D'Alambert method

1. Let $r=|x|, x \in \mathbb{R}^{n}, u(x)=f(r)$. Express Δu through $f, f^{\prime}, f^{\prime \prime}$.
2. Express Δu in the polar coordinates in the plane.
3. Deduce the d"Alambert formula.

Here and below $\varphi_{0}=-\sin x \chi_{[\pi, 2 \pi]}$.
4. Plot a movie for the Cauchy problem:

$$
\begin{gather*}
u_{t^{2}}=a^{2} u_{x^{2}} \tag{1}\\
\left.u\right|_{t=0}=\varphi_{0},\left.u_{t}\right|_{t=0}=0 . \tag{2}
\end{gather*}
$$

5. The same for (1) and

$$
\begin{equation*}
\left.u\right|_{t=0}=0,\left.u_{t}\right|_{t=0}=\varphi_{0} . \tag{3}
\end{equation*}
$$

In Problems $6 \mathrm{a}-\mathrm{d}$ the string is half-bounded: $x \geq 0$.
6. The same as in Problem 4 for $a .(1),(2),\left.u\right|_{x=0}=0 . \quad b .(1),(2),\left.u_{x}\right|_{x=0}=0$. $c .(1),(3),\left.u\right|_{x=0}=0 . d .(1),(3),\left.u_{x}\right|_{x=0}=0$.
7. Solve the Cauchy problem for the bounded string $x \in[0, \pi]$

$$
u_{t^{2}}=a^{2} u_{x^{2}},\left.u\right|_{x=0}=0,\left.u\right|_{x=\pi}=0,\left.u\right|_{t=0}=\sin k x,\left.u_{t}\right|_{t=0}=0 .
$$

8. Same for the initial data changed: $\left.u\right|_{t=0}=0,\left.u_{t}\right|_{t=0}=\sin k x$.
9. Prove the parallelogram lemma:

$$
(1) \Rightarrow u(A)+u(C)=u(B)+u(D),
$$

where A, B, C, D are vertexes of the characteritic parallelogram in the domain of u.
10. Solve the Cauchy problem for the bounded string $x \in[0, \pi]$

$$
u_{t^{2}}=a^{2} u_{x^{2}},\left.u\right|_{x=0}=b(t),\left.u\right|_{x=\pi}=c(t),\left.u\right|_{t=0}=0,\left.u_{t}\right|_{t=0}=0
$$

Hint: the answer is an alternating sum of the values of b and c at the vertexes of characteristic broken lines.
11. Resonance. Consider the previous problem with $a=1, b(t)=\sin k t$. Is the solution bounded?

Solved in the class: $3,4,5,6 \mathrm{a}, 7,9$.
HW: 1, 2, 6 b-d, 8, 10, 11

