PDE-17, recitation 3, Linear and quasilinear partial differential equations

Linear equations

1. Find the general solution of the system

$$
\begin{equation*}
\left(x^{2}-y^{2}\right) u_{x}+2 x y u_{y}=0 \tag{1}
\end{equation*}
$$

and plot the characteristics.
2. Are the following Cauchy problems for equation (1) solvable in a neighborhood of $(0,1)$:
a) $\left.u\right|_{x^{2}+y^{2}=1}=\sin x$
b) $\left.u\right|_{x^{2}+y^{2}=1}=\cos x$
3. a) Find the general solution of the problem $u_{x}+(-y+\cos 2 x) u_{y}=0$
b) Is it correct that any closed simple curve on the (x, y) plane has a characteristic point?

Quasilinear equations

4. Deduce an equation of a steady motion of particles in a no-collision media: $u(x, t)$ is the velocity of a particle that passes through the point x at the time t.
Answer: $u_{t}+u u_{x}=0$.
5. Solve the Cauchy problem $u_{t}+u u_{x}=0,\left.u\right|_{t=0}=f(x)$, problems a - c , and find the maximal segment $[a, b], a \leq 0 \leq b$ for which the solution exists for any $(t, x), t \in[a, b]$, problems a - d:
a) $f(x)=1$;
b) $f(x)=x$;
c) $f(x)=-x$;
d) $f(x)=\sin x$.
6. For what f from the previous problem the solution is defined on the whole (x, t) plane?
7. Solve the Cauchy problem $u_{t}-u u_{x}=0,\left.u\right|_{t=0}=f(x)$, and find the maximal segment $[a, b], a \leq 0 \leq b$ for which the solution exists for any $(t, x), t \in[a, b]$:
а) $f(x)=\alpha$;
б) $f(x)=\alpha x$.

Investigate the dependence of the answer on α.
8. Find the maximal segment $[a, b], a \leq 0 \leq b$ for which the solution of the Cauchy problem $u_{t}+u u_{x}=0,\left.u\right|_{t=0}=f(x)$, exists for any $(t, x), t \in[a, b]$.

Solved in the class: $4,5 \mathrm{a}, \mathrm{b}$.
HW: 1, 2, 3a, b, 5d, 7, 8 .

