1 Quasilinear partial differential equations

The main part of the lecture is covered by Section 7 of Arnold's "Geometric methods...".

1.1 Quasilinear equation

$$a_1(x, u)u_{x_1} + \dots + a_n(x, u)u_{x_n} = b(x, u)$$

$$a(x,u)D_u = b(x,u) \tag{1}$$

Definition 1 $\mathbb{R}^{n+1} = \{(x, u)\}$

Characteristics in \mathbb{R}^{n+1} :

$$\dot{x} = a \tag{2}$$
$$\dot{u} = b$$

Lemma 1 Characteristics are tangent to the graph of any solution of (1).

Proof If u = f(x) is a solution of (1), then b = aDf. Let F(x, u) = U - f(x), (a, b) = vThen $L_vF = b - aDf|_{u=f(x)} = 0$, as f is a solution.

1.2 Invariant manifolds

Lemma 2 If a manifold is tangent to a vector field, then it is saturated by its orbits.

Proof A manifold has the form F = 0. Change coordinates to (x, y) so that it will be $y = 0 : \Pi$. The vector field tangent to Π has 0 y-component: v(x, 0) = (w(x), 0). The phase curves of $\dot{x} = w(x)$, $x \in \Pi$, are in Π .

Corollary 1 The graph of a solution of (1) is saturated by characteristics (2).

1.3 Cauchy problem for (1)

A hypersurface $\gamma \subset \mathbb{R}^n$ is an initial surface, $\varphi : \Gamma \to \Gamma$ is an initial function.

$$u|_{\gamma} = \varphi \tag{3}$$

Remark 1 If solution of (1) exists, then its graph is the saturation by characteristics of the graph of the initial function.

This saturation must be a graph of a function.

Definition 2 A point $x \in \gamma$ is characteristic iff $a(x, \varphi(x))$ is tangent to γ (belongs to $T_x \gamma$).

Theorem 1 Problem (1), (3) has one and only one solution near any non-characteristic point.

Proof The saturation in the remark is a manifold. Projection of its tangent plane at $(x, \varphi(x))$ along the *u*-axis is $T_x \mathbb{R}^n$, because $a(x, \varphi(x)) \notin T_x \gamma$.

Some words were said about shock waves and Euler equation.