Задачи к спецкурсу "Введение в теорию моделей" (2017)

Все модели сигнатуры с равенством считаются нормальными. Запись (Q, <) означает (Q, <0), т.е. модель сигнатуры $\{<\}$ на множестве Q. И т.п.

Теория называется *конечно аксиоматизируемой*, если она эквивалентна некоторой конечной теории. Возрастающая последовательность теорий $T_0 \subset T_1 \subset T_2 \subset ...$ называется *строго возрастающей*, если эти теории попарно не эквивалентны.

- 25. (Тарский) Докажите, что объединение строго возрастающей последовательности теорий не является конечно аксиоматизируемой теорией.
- 26. а) Докажите, что теория всех бесконечных моделей в сигнатуре {=} не конечно аксиоматизируема.
 - b) Полна ли эта теория?
- 27. Рассмотрим игры $EF_m(L_6, L_7)$, где L_n =({1,2,...,n},<), при различных m. Выясните, при каких m второй игрок имеет выигрышную стратегию.
- 28. (\mathbf{N} ,<) + (\mathbf{Z} ,<) обозначает порядковую сумму натуральных и целых чисел (копия целочисленной прямой расположена после множества натуральных чисел). Выясните, какой игрок имеет выигрышную стратегию в $\mathrm{EF}_6((\mathbf{N},<),(\mathbf{N},<)+(\mathbf{Z},<))$.
- 29. При каких п верно, что $(N,<) \equiv_n (N,<) + (N,<)$?

Класс, состоящий из всех конечных моделей какой-нибудь замкнутой формулы, называется *финитно* элементарным.

- 30. Является ли финитно элементарным класс всех конечных моделей четной мощности в сигнатуре {P, =}, где P одноместный предикат?
- 31. Рассмотрим теорию Th(N, 0, S,=), где S(x)=x+1 функция следования.
 - (а) Является ли эта теория конечно аксиоматизируемой?
 - (b) Докажите, что в этой теории элиминируются кванторы.
- 32. Докажите, что в теории \mathbf{Z} в сигнатуре $\{+, 0, -(одноместный),=\}$ кванторы не элиминируются.
- 33. Рассмотрим сигнатуру с одним двуместным предикатом Е и равенством. Для каждой из следующих теорий выясните, элиминируются ли в ней кванторы и является ли она конечно аксиоматизируемой
 - а) Е отношение эквивалентности, которое имеет бесконечно много классов, и все они 2-элементны.
 - б) Е отношение эквивалентности, которое имеет бесконечно много классов, и все они бесконечны.
 - в) Е отношение эквивалентности, которое имеет бесконечно много 2-элементных и бесконечно много 3-элементных классов, и других классов нет.

- Γ) E отношение эквивалентности, и для любого конечного n, E имеет один класс мощности n.
- 34. Для сигнатуры $\{=,<,P^1\}$ рассмотрим модели вида $(\mathbf{Q},<,X)$, где $X\subseteq\mathbf{Q}$.
 - а) Найдите q(T) для $T = Th(\{(\mathbf{Q}, <, X)|\ X$ выпукло $\}$.
 - b) Найдите q(T) для $T = Th(\{(\mathbf{Q},<,X)|\ X$ открыто и всюду плотно в топологии $\mathbf{Q}\}$.