Листок 12. Несобственные интегралы

Анализ, 1 курс, модуль 4, **21.04.2016**

12◊**1** Докажите сходимость несобственных и интегралов и вычислите их:

a)
$$\int_{a}^{b} \frac{dx}{\sqrt{(x-a)(b-x)}}$$
, $a < b$; 6) $\int_{0}^{+\infty} x^{n}e^{-x}dx$, $n \in \mathbb{Z}^{+}$.

12◊2 Исследуйте несобственные интегралы на сходимость и абсолютную сходимость:

$$\mathbf{a}) \int_{0}^{1} \frac{dx}{(x-\sin x)^{p}}, \quad \mathbf{6}) \int_{0}^{+\infty} \frac{\sin^{2}x \, dx}{x^{p}}, \quad \mathbf{B}) \int_{\pi}^{+\infty} \frac{x\cos x \, dx}{x^{p}+x^{q}}, \quad \mathbf{r}) \int_{0}^{+\infty} x^{p} \cos(x^{3}) \, dx, \quad (p,q \in \mathbb{R});$$

- **12** \diamond **3** Пусть f ограничена на каждом ограниченном множестве. Вытекает ли из сходимости $\int_{1}^{+\infty} f(x) dx$ сходимость интегралов: **a)** $\int_{1}^{+\infty} f^3(x) dx$; **б)** $\int_{1}^{+\infty} \frac{|f(x)|}{x^2} dx$?
- **12**
о**4** Докажите, что интегралы $\int_0^{\pi/2} \ln \sin x \, dx$ и $\int_0^{\pi/2} \ln \cos x \, dx$
 сходятся и вычислите их.
- **12** \diamond **5** Пусть функция $f(x) \ge 0$ монотонная и пусть интеграл $\int_0^{+\infty} f(x) dx$ сходится. Докажите, что $\lim_{x \to +\infty} \left(x f(x) \right) = 0.$
- **12** \diamond 6 Пусть функция f удовлетворяет глобальному условию Липшица $|f(x)-f(y)|\leqslant K|x-y|,$ $x,y\in[0,\infty)$ и пусть интеграл $\int_0^{+\infty}f(x)\,dx$ сходится. Докажите, что $\lim_{x\to\infty}f(x)=0.$
- **12** \diamond 7 Пусть функция $f \in C[0, \infty)$ неотрицательна и удовлетворяет при некоторых a > 0 и $q \in (0, 1)$ условию f(x+a) < qf(x) при всех $x \geqslant 0$. Докажите, что интеграл $\int_0^{+\infty} x^n f(x) \, dx$ сходится при любом натуральном n.
- **12** \diamond **8** Вычислите интеграл $\int_0^{+\infty} \frac{f(ax) f(bx)}{x} dx$, a, b > 0, где $f \in C[0, \infty)$ удовлетворяет одному из условий:
 - а) интеграл $\int_{1}^{+\infty} \frac{f(x)}{x} dx$ сходится;
 - **б)** при некотором T > 0 для всех $x \ge 0$ справедливо равенство f(x + T) = f(x);
 - в) существует конечный предел $\lim_{x\to +\infty} f(x)$.
- $\mathbf{12} \diamond \mathbf{9}^*$ Пусть непрерывная функция $f(x) \geqslant 0$ монотонна и пусть интеграл на бесконечности от неё сходится. Докажите, что $\lim_{h \to +0} h \sum_{x=0}^{\infty} f(nh) = \int_{0}^{+\infty} f(x) \, dx$.
- $\mathbf{12}\diamond\mathbf{10}^*$ Вычислите интеграл $\int_0^{+\infty} \frac{\pi(x)}{x^3-x} dx$, где $\pi(x)$ число простых чисел, не превосходящих x.