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1. An invariant of two-dimensional knots in four-space

A classical knot is an embedded circle in 3-space, and much of low-
dimensional topology is concerned with the problem of deciding when two knots
are the same. A natural measure of the complexity of a knot its crossing num-
ber : a generic projection of a knot onto the 2-dimensional plane is a circle with
a number of self-intersections, where two arcs intersect at a point (called a dou-
ble point); the crossing number is the minimal number of double points in any
projection of that knot. This knot invariant (it does not change under isotopy
of the knot) is used, for example, to organize different knots into knot tables.

A two-dimensional knot, or 2-knot, is an embedded 2-sphere in 4-space.
Now, a generic projection of a 2-knot onto 3-dimensional space may have self-
intersections of two types: either two sheets intersect in a 1-dimensional curve
of double points, or three sheets intersect at an isolated triple point. In analogy
with the crossing number of a knot, the triple point number of a 2-knot is the
minimal number of triple points in any 3-dimensional projection of that 2-knot.
A 2-knot with vanishing triple point number is called pseudo-ribbon.

Not a lot is known about the triple point number of 2-knots, however, and
consequently an organizational framework of 2-knots seems a long way off. In-
deed, until 2004 it was not known if 2-knots which are not pseudo-ribbon even
existed.

Recently, an invariant µ of 2-knots was proposed in [2] (see below) which
obstructs a 2-knot being pseudo-ribbon. That is, if a 2-knot K is pseudo-ribbon,
then µ(K) = 0. (Thus, if µ(K) 6= 0 then we know K is not pseudo-ribbon.)
However, the only examples with µ 6= 0 computed thus far were already known
not to be pseudo-ribbon by other methods. The question then arises: can the
invariant µ detect new examples of 2-knots which are not pseudo-ribbon?

The goal of this project is to address this question. In doing so you will learn
about (among other things): 2-dimensional analogues of classical knot diagrams,
what a quandle is and how this can be used to color a 2-knot, and how a certain
homology may be associated to such a coloring to detect interesting 2-knots.

Pre-requisites: first courses in differential topology (in particular, transver-
sality) and algebraic topology (homology, CW-complexes, fundamental group).
A familiarity with knot theory is not necessary.

Suggested reading:

1. S. Carter, S. Kamada, and M. Saito, Surfaces in 4-space, Encyclopaedia
of Mathematical Sciences, vol. 142, Springer-Verlag, Berlin, 2004. Low-
Dimensional Topology, III.

2. T. Yashiro, Pseudo-cycles of surface-knots, J. Knot Theory Ramifications
25 (2016), no. 13, 1650068, 18 pp.

alightfoot@hse.ru 1



Student Projects Ash Lightfoot, HSE

2. Vassiliev invariants and two-dimensional braids

Two of the most useful results in low-dimensional topology are the classical
theorems of Alexander and Markov, which state that any link in 3-space (i.e.,
an embedding of a disjoint union of circles into R3) is represented by a closed
braid, and braid representations of isotopic links are related by some elementary
operations called Markov moves. These theorems enable braid theory to play
an important role in knot theory; for example, the original formulation of the
Jones polynomial was in terms of braids.

A (geometric) braid is the disjoint union of simple arcs in the solid cylinder
D2× [0, 1] such that each arc ascends monotonically from D2×{0} to D2×{1}.
By taking a “movie” of braids (where we regard “time” as a fourth dimen-
sion) one may construct a 2-dimensional braid, or 2-braid, in 4-space, and the
Alexander and Markov theorems have natural analogues in this 4-dimensional
setting: any (possibly disconnected) surface in 4-space may be represented by a
2-braid, and 2-braids representing isotopic surfaces are related by a sequence of
Markov-like moves. The notion of 2-braids may further be generalized to singu-
lar 2-braids, where the underlying surface may have transverse self-intersections
(which is the generic situation), and the theory of Vassiliev invariants has been
adapted to this setting. In this project you will investigate the properties of
these invariants.

In the classical setting, a Vassiliev invariant is a numerical invariant of (ori-
ented) links which, when extended to singular links in a canonical way, satisfies
a certain finiteness condition. A fundamental open question of low-dimensional
topology is whether or not Vassiliev invariants distinguish all knots.

A numerical invariant of 2-braids in 4-space may be extended to singular 2-
braids in a similar way. These Vassiliev-type invariants have been shown in [1]
(see below) to depend on certain simple data associated to a 2-braid. The goal
of this project is to adapt the methods of [1] to prove the following conjecture:
any Vassiliev-type invariant of 2-links (i.e., an embedding of a disjoint union of
2-spheres into the 4-sphere) is trivial, meaning that the invariant has the same
value for all 2-links. The conjecture is known to hold for 2-knots (one-component
2-links).

In doing so you will learn about (among other things): classical Vassiliev
knot invariants and their generalizations, how to separate surfaces in 4-space,
two-dimensional braids.

Pre-requisites: a first course in differential topology (in particular, transver-
sality). A familiarity with knot theory is not necessary.

Suggested reading:

1. M. Iwakiri, Unknotting singular surface braids by crossing changes. Osaka
Journal of Mathematics 45.1 (2008): 61-84.

2. S. Kamada, Braid and knot theory in dimension four. Vol. 95. American
Mathematical Soc., 2002.
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