ЛИСТОК **13**. ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА Анализ, 1 курс, **20.05.2017**

13
$$\diamond$$
1 Вычислите пределы: **a)** $\lim_{y \to +\infty} \int_1^2 \frac{\ln(x+y)}{\ln(x^2+y^2)} dx;$ **6)** $\lim_{n \to \infty} \int_0^{\pi/2} e^{-n \sin x} dx.$

13
$$\diamond$$
2 Пусть $f \in C[a,b]$, $F(x) = \frac{1}{(n-1)!} \int_a^x (x-t)^{n-1} f(t) dt$. Докажите, что $F^{(n)}(x) = f(x)$ на $[a,b]$.

13◊3 Вычислите интегралы (применив дифференцирование по параметру)

a)
$$I(\alpha) = \int_0^{\pi/2} \frac{\arctan(\alpha \operatorname{tg} x)}{\operatorname{tg} x} dx;$$

6)
$$I(\alpha) = \int_0^{\pi} \ln(1 - 2\alpha \cos x + \alpha^2) dx, \, |\alpha| < 1.$$

13 \diamond 4 Пусть $f(x,y)=\frac{y^3}{x^2}e^{-y^2/x}$ при x>0 и f(x,y)=0 при x=0. Убедитесь, что равенство $\frac{d}{dy}\int_0^1 f(x,y)dx=\int_0^1 f_y'(x,y)dy$ выполнено не для всех $y\in[0,1]$. Какие условия теоремы о дифференцировании интеграла по параметру здесь нарушаются?

Г и В-функции

 $13 \diamond 5$ Исследуйте интегралы на равномерную по α сходимость на указанных множествах:

а)
$$\int_0^{+\infty} \frac{xdx}{1+(x-\alpha)^4}$$
 при $\alpha \in (-\infty,0]$ и при $\alpha \in [0,+\infty)$;

б)
$$\int_0^{+\infty} \frac{\sin(\alpha x)}{\sqrt{x}} dx$$
 при $\alpha \in [1, +\infty)$ и при $\alpha \in [0, +\infty)$.

13
$$\diamond$$
6 а) Докажите, что $\frac{1}{x^s} = \frac{1}{\Gamma(s)} \int_0^{+\infty} y^{s-1} e^{-xy} dy$ при $s>0, \ x>0.$

б) Докажите, что
$$\int_0^{+\infty} \frac{\cos(ax)}{x^{\alpha}} dx = \frac{\pi a^{\alpha-1}}{2\Gamma(\alpha)\cos(\pi\alpha/2)} \text{ при } 0 < \alpha < 1, \ a > 0.$$

в) Докажите, что
$$\int_0^{+\infty} \frac{\sin(bx)}{x^{\beta}} dx = \frac{\pi b^{\beta-1}}{2\Gamma(\beta)\sin(\pi\beta/2)}$$
 при $0 < \beta < 2, b > 0$. Указание: для решения (б) и (в) пригодится (а).

г) Вычислите интегралы Френеля
$$\int_0^{+\infty} \cos x^2 dx$$
 и $\int_0^{+\infty} \sin x^2 dx$.

13
$$\diamond$$
7 а) Докажите, что $(\ln \Gamma(x))'' = \sum_{k=0}^{\infty} \frac{1}{(x+k)^2}$ для всех $x > 0$.

б) Вычислите
$$\sum_{n=1}^{\infty} \frac{1}{n^2}.$$

13
⋄8 Выразите длину эллипса $2x^2 + y^2 = 1$ через значения *B*-функции.