Листок 4. .

Мартингалы. Стохастический интеграл. Формула Ито. Стохастические ДУ.

- (1) Докажите, что мартингал ξ_t , $\mathbb{E}(\xi_t^2) < \infty$ процесс с некоррелированными
- (2) Пусть $\{\xi_k\}$ независимые с.в. со средним 1. Докажите, что $X_n = \prod_{k=1}^n \xi_k$ мартингал.
- (3) Пусть ξ_n последовательность независимых с.в. Предположим, что существует t>0 со свойством $\mathbb{E}e^{t\xi_n}=1$. Докажите, что $P(\sup_{k\in\mathbb{N}}S_k\geq x)\leq e^{-tx}$, где $S_n = \xi_1 + \cdots + \xi_n$.
- (4) Коробка содержит красный и синий шары. Шар выбирается случайным образом и возвращается в коробку вместе с еще одним шаром того же цвета. Пусть R_n — число красных шаров в коробке после повторения процедуры n раз. Докажите, что $R_n/(n+2)$ — мартингал. Пусть N — число шаров, вытянутых до первого синего. Найти $\mathbb{E}(N+2)^{-1}$.
- (5) * **Неравенство Дуба.** Пусть X_n дискретный неотрицательный субмартингал, $n \in \{0, 1, \dots, N\}$. Докажите, что

$$\mathbb{E}\left(\max_{0 \le n \le N} X_n^2\right) \le 4 \mathbb{E} X_N^2.$$

Указание: для числовой неотрицательной последовательности x_n докажите неравенство

$$\overline{x}_N^2 + 4\sum_{n=0}^{N-1} \overline{x}_n(x_{n+1} - x_n) \le 4x_N^2,$$

 $\overline{x}_n = \max_{0 < i < n} x_i.$

- (6) Найдите многочлены 1) 3-й, 2) 4-й степени от винеровского процесса W_t , являющиеся мартингалами. Коэффициенты могут зависеть от времени. Пример многочлена второй степени: $W_t^2 - t$.
- (7) Используя формулу Ито
 - 1) доказать, что

$$\int_0^t s dW_s = tW_t - \int_0^t W_s \, ds, \int_0^t W_s^2 \, dW_s = \frac{1}{3} W_t^3 - \int_0^t W_s \, ds.$$

- 2) найти итерационную формулу для $b_k(t)=\mathbb{E} W_t^k$. (8) Пусть f гладкая функция. Докажите, что $f(W_t)-\frac{1}{2}\int_0^t f''(W_s)\ ds$ мартин-
- (9) (Полиномы Эрмита) Докажите, что n-ая итерация стохастического интеграла

$$n! \int \cdots \int_{0 \le s_1 \cdots s_n \le t} dW_{s_1} \cdots dW_{s_n}$$

имеет вид $t^{n/2}H_n(W_t/\sqrt{t})$ — где H_n — многочлен Эрмита

$$H_n = (-1)^n e^{\frac{x^2}{2}} \left(e^{-\frac{x^2}{2}}\right)^{(n)}.$$

(10) Используя формулу Ито докажите, что процессы

$$(W_t + t)e^{-W_t - \frac{1}{2}t},$$

$$\frac{1}{\sqrt{1+t}}e^{\frac{W_t^2}{2(1+t)}}$$

является мартингалами

(11) Пусть τ — первый момент выхода процесса $Y_t = W_t + ct$ из интервала (a,b), a < 0, b > 0. Найти

$$P(Y_{\tau} = a), P(Y_{\tau} = b), \mathbb{E}\tau.$$

- (12) Положим $\tau = \inf\{t : |W_t| = 1\}$. Найти $\mathbb{E}(\tau e^{-\lambda \tau}), \lambda > 0$.
- (13) Найти среднее $\mathbb{E}(X_t)$ и ковариационную функцию $K(s,t) = \mathbb{E}(X_t \mathbb{E}X_t)(X_s \mathbb{E}X_s)$ для решения стохастического уравнения

$$dX_t = -X_t dt + e^{-t} dt + e^t dW_t, \quad X_0 = 0.$$

- (14) Найти явное (с помощью обычных и стохастических интегралов) решение стохастического дифференциального уравнения.
 - (а) (процесс Орнштейна-Уленбека)

$$dx_t = ax_t dt + bdW_t.$$

(b) (Геометрическое броуновское движение)

$$dx_t = ax_t dt + bx_t dW_t.$$

(15) Пусть X_t — решение стохастического дифф. уравнения

$$X_{t} = X_{0} + \int_{0}^{t} \sigma(t, X_{s}) dW_{s} + \int_{0}^{t} b(s, X_{s}) ds$$

с липшицевыми коэффициентами σ, b (с константой C) на отрезке [0,T]. Доказать, что $\mathbb{E} X_t^2 \leq A e^{Bt}$, найти явную зависимость A,B от X_0,T,C .