Листок 9

- 1. Пусть P эрмитова матрица. Доказать эквивалентность следующих трех утверждений:
- а) P > 0, то есть $x^*Px > 0$, если $x \neq 0$;
- б) $P = B^*B$ для некоторой невырожденной матрицы B;
- в) все собственные значения матрицы P положительны.
- 2. Пусть $A n \times k$ -матрица. Доказать, что матрицы A, A^*, A^*A, AA^* имеют одинаковый ранг.
- 3. Пусть λ наименьшее, а μ наибольшее собственное значение эрмитовой матрицы $A=(a_{ij})$. Доказать, что $\lambda \leq a_{ii} \leq \mu$.
- 4. Доказать, что перестановочные операторы A и B в унитарном протранстве могут быть одновременно записаны верхне-треугольными матрицами в некотором ортонормальном базисе.
- 5. Доказать, что любую комплексную квадратную матрицу можно представить в виде произведения унитарной и верхне-треугольной матриц.
 - 6. Как связаны жордановы нормальные формы операторов A и A^* ?
- 7. Пусть A невырожденная комплексная квадратная матрица. Доказать, что существуют такие унитарная матрица U и положительная эрмитова матрица P того же порядка, что A = UP. Доказать, что такое разложение определено однозначно.
- 8. Пусть A и B две комплексные $n \times n$ матрицы. Доказать эквивалентность следующих двух условий:
- а) B = UA для некоторой унитарной матрицы U;
- б) $A^*A = B^*B$.

Рассмотрим пространство \mathbb{R}^{2n} , снабженное канонической евклидовой структурой $g(u,v)=u^tv,\ u,v$ – вектор-столбцы в \mathbb{R}^{2n} , и канонической симплектической структурой $\omega(u,v)=u^tJ_nv$,где $J_n=\begin{pmatrix} O & -E_n \\ O & O \end{pmatrix}$.

 $u^t J_n v$,где $J_n = \begin{pmatrix} O & -E_n \\ E_n & O \end{pmatrix}$. Отождествим \mathbb{R}^{2n} с \mathbb{C}^n , сопоставив вещественный вектор-столбец $(x_1, \dots, x_n, y_1, \dots, y_n)^t$ комплексному вектор-столбцу $(x_1 + iy_1, \dots, x_n + iy_n)^t$.

- 9. Докажите, что при таком отождествлении:
- а) линейная операция $z \to iz$ в \mathbb{C}^n превращается в линейное преобразование $v \to J_n v$ пространства \mathbb{R}^{2n} ;
- б) отображение $X+iY\to {X-Y\choose Y}$ осуществляет вложение группы $GL(n,\mathbb{C})$ в группу $GL(2n,\mathbb{R})$.
- 10. Докажите, что $H(u,v)=g(u,v)-ig(J_nu,v)$ задает эрмитово скалярное произведение в \mathbb{C}^n , и при этом $U(H)=O(2n)\cap Sp(2n,\mathbb{R})=GL(n,\mathbb{C})\cap Sp(2n,\mathbb{R})=GL(n,\mathbb{C})\cap O(2n)$. (Пересечения берутся в группе $GL(2n,\mathbb{R})$.)