Введение в теорию моделей (весна 2017)

В.Б. Шехтман

Лекция 11 (содержание)

Теорема компактности

Предложение 11.1 Пусть T — финитно выполнимая теория в сигнатуре L, тогда существует сигнатура $L^* \supset L$ и теория $S \supset T$ в сигнатуре L^* , такие что

- $|L^*| = \max(|L|, \aleph_0),$
- S максимальна,
- \bullet S meopus Xенкина,
- S финитно выполнима.

Лемма 11.2 Пусть $T, S - \kappa a \kappa$ в предложении 11.3. Тогда S имеет модель мощности $k = |L^*|$.

Доказательство (план) Для доказательства строим *каноническую мо-* θ *ель* M теории S следующим образом.

Ее носитель \underline{M} состоит из дубликатов всех замкнутых термов сигнатуры L^* (формально: имеется биекция между термами t и их дубликатами \underline{t}). Символы L^* интерпретируются так:

$$c_M := \underline{c}$$

для каждой константы c,

 $f_M(\underline{t_1},\ldots,\underline{t_n}) := f(t_1,\ldots,t_n)$

2 В.Б. Шехтман

для каждого функционального символа f^n и замкнутых термов t_1, \ldots, t_n ,

$$P_M(\underline{t_1},\ldots,\underline{t_n}):=egin{cases} 1,\ ext{ecju}\ P(t_1,\ldots,t_n)\in S,\ 0\ ext{uhave}\ . \end{cases}$$

для каждого предикатного символа P^n и замкнутых термов t_1,\ldots,t_n .

Затем по индукции доказываем 2 утверждения.

Утверждение 1 Если t — замкнутый терм L^* , то $|t|_M = t$.

Утверждение 2 Если φ — замкнутая формула L^* , то

$$|\varphi|_M = \begin{cases} 1, \text{ если } \varphi \in S, \\ 0 \text{ иначе } . \end{cases}$$

Из утверждения 2 следует, что $M \vDash S$.

Теорема 11.3 (теорема компактности) Пусть L — сигнатура, $k = \max(|L|, \aleph_0)$.

- (1) Если T финитно выполнимая теория в сигнатуре L, то T имеет модель мощности k.
- (2) Если L сигнатура c равенством и T финитно нормально выполнимая теория в сигнатуре L, тогда T имеет нормальную модель мощности $\leq k$.

Доказательство (1) По предложению 11.3 расширим T до S. По лемме 11.2, S имеет модель мощности k.

(2) Поскольку T финитно нормально выполнима, то теория $T \cup Eq_L$ финитно выполнима. По (1), она имеет модель мощности k. Тогда, по лемме о нормализации, получаем нормальную модель T мощности $\leq k$.

В дальнейшем рассматриваются только теории с равенством и нормальные модели.

Лекция 12 (содержание)

Следствия теоремы компактности

Теорема 12.1 (теорема Лёвенгейма — Сколема о подъеме) Пусть T — теория в сигнатуре L, $k = \max(|L|, \aleph_0)$. Если для любого конечного n теория имеет модель мощности > n, то для любого $\lambda > k$ T имеет модель мощности λ .

Следствие 12.2 Пусть T — теория в сигнатуре L, $|L| \leq \aleph_0$. Если для любого конечного n теория T имеет модель мощности > n, то T имеет счетную модель.

Отсюда следует, например, что класс всех конечных полей (в сигнатуре колец) — не Δ -элементарный.

Теорема 12.3 (признак полноты Лося – Вота) Пусть T — теория в сигнатуре $L, k \ge \max(|L|, \aleph_0)$. Если k-категорична и не имеет конечных моделей, то T полна.

Элементарные расширения

Определение 1 Пусть M — модель сигнатуры L.

Диаграммой модели M называется следующая теория в сигнатуре $L \cup M$:

$$D(M) := \{ \varphi(\mathbf{a}) \mid \varphi(\mathbf{x}) - amoмapная формула в L, \mathbf{a} - кортеж элементов из M \}$$

$$\cup \{ \neg \varphi(\mathbf{a}) \mid \varphi(\mathbf{x}) - amoмaphaя формула в L, \mathbf{a} - кортеж элементов из M \}.$$

Элементарной диаграммой модели M называется следующая теория в сигнатуре $L \cup M$:

$$E(M) := \{ \varphi(\mathbf{a}) \mid \varphi(\mathbf{x}) - \phi$$
ормула в $L, \ \mathbf{a} - \kappa$ ортеж элементов из $M \}$

$$\cup \{\neg \varphi(\mathbf{a}) \mid \varphi(\mathbf{x}) - \phi$$
ормула в $L, \mathbf{a} - \kappa$ ортеж элементов из $M\}$.

Лемма 12.4 Пусть M-L-структура, $M'-(L\cup M)$ -структура. Тогда

В.Б. Шехтман

- (1) Если $M' \models D(M)$, то M вложима в M'|L.
- (2) Если $M' \vDash E(M)$, то M элементарно вложима в M'|L.

Здесь M'|L обозначает обеднение M' до сигнатуры L.

Теорема 12.5 (Теорема Лёвенгейма — Сколема — Тарского о подъеме) Пусть M — бесконечная L-структура; $k \ge |M|, |L|$. Тогда M элементарно вложима в L-структуру мощности k.

Доказательство E(M) выполнима в M (если ее рассматривать в сигнатуре $L \cup M$). Тогда, по теореме 12.1, E(M) имеет модель M' мощности k. По лемме 12.4, M элементарно вложима в M'|L.

Примеры

- $\overline{1}$. Стандартная модель **N** сигнатуры арифметики имеет счетное нестандартное расширение: к $E(\mathbf{N})$ надо добавить новую константу c и аксиомы $c \neq 0, c \neq 1, c \neq 2, \ldots$ По теореме 12.1, эта теория имеет счетную модель.
- 2. Рассматривая нестандартное расширение \mathbf{N}^+ структуры $(\mathbf{N},<,S)$, можно показать, что в $(\mathbf{N},<,S)$ не определимо сложение: существует автоморфизм \mathbf{N}^+ , не сохраняющий четность стандартных натуральных чисел. Поэтому множество четных чисел не определимо в $(\mathbf{N},<,S)$.