Affine Kac-Moody Lie algebras Homework 2 due 18.10.17

1. Prove that any two minimal realizations of a matrix A are isomorphic. Deduce that the algebra $\tilde{L}(A)$ does not depend on a minimal realization.

2. Prove that for any $\lambda \in \mathfrak{h}^*$ the map $\theta_{\lambda} : \tilde{L}(A) \to \operatorname{End}(T(V))$ defines representation of $\tilde{L}(A)$.

3. Compute the root decomposition for the Lie algebra $\mathfrak{so}_8(\mathbb{C})$.

4. Let \mathfrak{h} be a finite dimensional abelian Lie algebra and V be an \mathfrak{h} -module such that $V = \bigoplus_{\alpha \in \mathfrak{h}^*} V_{\alpha}$, where V_{α} consists of all $v \in V$ such that $hv = \alpha(h)v$ for all $h \in \mathfrak{h}$. Let $U \subset V$ be an \mathfrak{h} -submodule. Then $U = \bigoplus_{\alpha \in \mathfrak{h}^*} (U \cap V_{\alpha})$.

5. Prove that the Casimir element $ef + fe + h^2/2$ belongs to the center of the universal enveloping algebra $U(\mathfrak{sl}_2)$. Compute the action of the Casimir element on the (n + 1)-dimensional irreducible representation of \mathfrak{sl}_2 .

6. Describe all one-dimensional central extensions of the Lie algebra $\mathfrak{sl}_n(\mathbb{C})$.