Hilbert spaces

2.1. Consider the vector space $H=C[-1,1]$ with the inner product $\langle f, g\rangle=\int_{-1}^{1} f(t) \overline{g(t)} d t$. Let

$$
H_{0}=\left\{f \in H: \int_{-1}^{0} f(t) d t=\int_{0}^{1} f(t) d t\right\} .
$$

(a) Prove that H_{0} is a closed vector subspace of H.
(b) Does the equality $H=H_{0} \oplus H_{0}^{\perp}$ hold?
2.2. Prove that every incomplete inner product space H has a closed vector subspace H_{0} such that $H_{0} \oplus H_{0}^{\perp} \neq H$.
2.3. Let $C_{c}^{\infty}(a, b)$ be the space of smooth compactly supported functions on the interval (a, b). Prove that for each $p \in[1, \infty) C_{c}^{\infty}(a, b)$ is dense in $L^{p}[a, b]$.
Definition 2.1. Let $f \in L^{2}[a, b]$. A function $f^{\prime} \in L^{2}[a, b]$ is a weak derivative of f if

$$
\int_{a}^{b} f^{\prime} \varphi d t=-\int_{a}^{b} f \varphi^{\prime} d t
$$

for all $\varphi \in C_{c}^{\infty}(a, b)$.
2.4. Prove that if $f \in L^{2}[a, b]$ has a weak derivative f^{\prime}, then f^{\prime} is unique (as an element of $L^{2}[a, b]$).
2.5 (the Sobolev space). Let $W^{1,2}(a, b)$ denote the space of all $f \in L^{2}[a, b]$ that have a weak derivative $f^{\prime} \in L^{2}[a, b]$. Prove that $W^{1,2}(a, b)$ is a Hilbert space with respect to the inner product

$$
\langle f, g\rangle=\int_{a}^{b}\left(f \bar{g}+f^{\prime} \bar{g}^{\prime}\right) d t
$$

2.6 (the Hardy space). Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$, and let H^{2} denote the space of holomorphic functions $f: \mathbb{D} \rightarrow \mathbb{C}$ satisfying the following condition:

$$
\|f\|=\sup _{0<r<1}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \varphi}\right)\right|^{2} d \varphi\right)^{1 / 2}<\infty
$$

Show that the map $f \mapsto\left(c_{n}(f)\right)_{n \geqslant 0}$ (where $c_{n}(f)$ is the nth Taylor coefficient of f at 0) is an isometric isomorphism of $\left(H^{2},\|\cdot\|\right)$ onto $\ell^{2}\left(\mathbb{Z}_{\geqslant 0}\right)$. Hence H^{2} is a Hilbert space.
2.7-B (the Bergman space). Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$, and let $L_{a}^{2}(\mathbb{D})$ denote the space of holomorphic functions $f: \mathbb{D} \rightarrow \mathbb{C}$ satisfying the following condition:

$$
\|f\|=\left(\int_{\mathbb{D}}|f(x+i y)|^{2} d x d y\right)^{1 / 2}<\infty
$$

Show that $L_{a}^{2}(\mathbb{D})$ is a closed vector subspace of $L^{2}(\mathbb{D})$. Hence $L_{a}^{2}(\mathbb{D})$ is a Hilbert space.
2.8-B (the von Neumann-Jordan Theorem). Let H be a normed space. Suppose that the parallelogram rule holds in H. Show that the formula

$$
\langle x, y\rangle=\frac{1}{4} \sum_{k=0}^{3} i^{k}\left\|x+i^{k} y\right\|^{2} \quad(x, y \in H)
$$

determines an inner product on H, and that the norm generated by $\langle\cdot, \cdot\rangle$ equals the original norm on H.

Linear operators

2.9. Choose $t_{0} \in[a, b]$, and consider the linear functional

$$
F:\left(C[a, b],\|\cdot\|_{p}\right) \rightarrow \mathbb{K}, \quad F(x)=x\left(t_{0}\right) .
$$

(a) Find all $p \in[1,+\infty]$ such that F is bounded. (b) Find $\|F\|$.
2.10. Let $\alpha=\left(\alpha_{n}\right) \in \ell^{\infty}$, and let $X=\ell^{p}$ or c_{0}. The diagonal operator $M_{\alpha}: X \rightarrow X$ takes each $x \in X$ to $\left(\alpha_{n} x_{n}\right)_{n \in \mathbb{N}} \in X$. (a) Show that M_{α} is bounded. (b) Find $\left\|M_{\alpha}\right\|$.
2.11. Let X be either $L^{p}[0,1](1 \leqslant p<+\infty)$ or $C[0,1]$. Define $T: X \rightarrow X$ by

$$
(T f)(x)=\int_{0}^{x} f(t) d t \quad(f \in X)
$$

(a) Prove that T is bounded. (b) Find $\|T\|$ in the cases where $X=C[0,1]$ and $X=L^{1}[0,1]$.

Remark. If the above operator T acts on $L^{2}[0,1]$, then $\|T\|=2 / \pi$. We will be able to prove this in due course.
2.12. Let $I=[a, b]$, and let $K \in C(I \times I)$. The integral operator $T: C(I) \rightarrow C(I)$ is given by

$$
(T f)(x)=\int_{a}^{b} K(x, y) f(y) d y
$$

Prove that T takes $C(I)$ to $C(I)$, that T is bounded, and that $\|T\| \leqslant\|K\|_{\infty}(b-a)$.
2.13. Let (X, μ) be a measure space, and let $K \in L^{2}(X \times X, \mu \times \mu)$. The Hilbert-Schmidt integral operator $T: L^{2}(X, \mu) \rightarrow L^{2}(X, \mu)$ is given by

$$
(T f)(x)=\int_{X} K(x, y) f(y) d \mu(y)
$$

Prove that T takes $L^{2}(X, \mu)$ to $L^{2}(X, \mu)$, that T is bounded, and that $\|T\| \leqslant\|K\|_{2}$.
2.14. Define a linear functional F on $\left(C[0,1],\|\cdot\|_{\infty}\right)$ by

$$
F(f)=2 f(0)-3 f(1)+\int_{0}^{1} f(t) d t
$$

(a) Prove that F is bounded. (b) Find $\|F\|$.
2.15. Let X, Y be normed spaces. Suppose that X is finite-dimensional. Prove that each linear operator $T: X \rightarrow Y$ is bounded.
2.16. Let H^{2} be the Hardy space (see Exercise 2.6).
(a) Show that for each $w \in \mathbb{D}$ the linear functional $F_{w}: H^{2} \rightarrow \mathbb{C}, F_{w}(f)=f^{\prime}(w)$, is bounded.
(b) The Riesz Theorem together with (a) implies that for each $w \in \mathbb{D}$ there exists a unique $g_{w} \in H^{2}$ such that for all $f \in H^{2}$ we have $F_{w}(f)=\left\langle f, g_{w}\right\rangle$. Find an explicit formula for $g_{w}(z)$.
2.17-B. Let $L_{a}^{2}(\mathbb{D})$ be the Bergman space (see Exercise 2.7-B).
(a) Show that for each $w \in \mathbb{D}$ the linear functional $F_{w}: L_{a}^{2}(\mathbb{D}) \rightarrow \mathbb{C}, F_{w}(f)=f(w)$, is bounded.
(b) The Riesz Theorem together with (a) implies that for each $w \in \mathbb{D}$ there exists a unique $g_{w} \in L_{a}^{2}(\mathbb{D})$ such that for all $f \in L_{a}^{2}(\mathbb{D})$ we have $F_{w}(f)=\left\langle f, g_{w}\right\rangle$. Find an explicit formula for $g_{w}(z)$.

