GALOIS THEORY. HW1. (DUE OCTOBER, 6)

1. (The Chinese remainder theorem). Let R be a commutative ring. Ideals $I, J \subset R$ are said to be coprime if $I+J=R$. Show that for any collection $I_{1}, \cdots I_{n}$ of pairwise coprime ideals the natural homomorphisms

$$
R / I_{1} I_{2} \cdots I_{n} \rightarrow R / \cap_{i} I_{i} \rightarrow \bigoplus_{i} R / I_{i}
$$

are isomorphisms. Here $I_{1} I_{2} \cdots I_{n}$ is the product of ideals, that is the ideal generated by all elements of the form $a_{1} \cdots a_{n}$ with $a_{i} \in I_{i}$.
2. Let R be a finite dimensional algebra over a field k. Prove that every prime ideal in R is maximal. Also prove that R has only finitely many maximal ideals.
3. Prove that $x^{5}-n x-1 \in \mathbb{Z}[x]$ is irreducible for $n \neq 0,-1,2$.
4. Prove that, for every prime p and integer $n>0$, the polynomial

$$
f(x)=\frac{x^{p^{n}}-1}{x^{p^{n-1}}-1}
$$

is irreducible in $\mathbb{Q}[x]$.
5. Write the real number

$$
\frac{1}{1-2 \sqrt[3]{2}}
$$

in the form $a+b \sqrt[3]{2}+c \sqrt[3]{4}$ with $a, b, c \in \mathbb{Q}$.
6. Compute the degrees
(a) $[\mathbb{Q}(\sqrt[3]{2}, \sqrt{2}): \mathbb{Q}]$
(b) $[\mathbb{Q}(\sqrt[3]{2}+\sqrt{2}): \mathbb{Q}]$
(c) $[\mathbb{Q}(\sqrt{3}+\sqrt{2}): \mathbb{Q}]$
(d) $[\mathbb{Q}(\sqrt[3]{2}+\sqrt[3]{3}): \mathbb{Q}]$.
(Here, for $\alpha \in \mathbb{R}, \mathbb{Q}(\alpha)$ denotes the subfield of \mathbb{R} generated by α.)
7. Prove that, for every prime p and $0 \neq a \in \mathbb{F}_{p}$, the polynomial $x^{p}-x-a$ is irreducible in $\mathbb{F}_{p}[x]$.

