Introduction to Number Theory. Problem set I .
 Due date: October 24, 2017.

1. We proved that every prime number congruent to 1 modulo 4 can be written in the form $x^{2}+y^{2}$, where x, y are nonnegative integers. Prove that such a representaion is unique up to a permutation of summands.
2. Find all integral solutions to the equation $x^{2}+1=y^{3}$.
3. Prove that every ideal in the rings $\mathbb{Z}[\sqrt{2}], \mathbb{Z}[\sqrt{3}], \mathbb{Z}[\sqrt{6}]$ is principal. Give an example of a non-principal ideal in $\mathbb{Z}[\sqrt{-3}]$. Finally, show that every ideal in $\mathbb{Z}[\omega]$, where $\omega=\frac{1+\sqrt{-3}}{2}$, is principal.
4. Prove that a prime number p can be written in the form $x^{2}+3 y^{2}, x, y \in \mathbb{Z}$, if and only if $p=3$ or $p \equiv 1 \bmod 3$.
5. (a) Show that equations $x^{2}-2 y^{2}=-1, x^{2}-2 y^{2}=1$ have infinitely many solutions in integers.
(б) Prove that, for p of the form $\pm 1+8 k$, equations $x^{2}-2 y^{2}=-p, x^{2}-2 y^{2}=p$ have infinitely many solutions in integers.
6. Prove that for every odd prime number p, one has

$$
\sum_{i=1}^{p-1}(i / p)=0 .
$$

(Here (i / p) is the Legendre symbol.)
7. Let n be a nonzero integer. Prove that there is a unique homomorphism χ : $(\mathbb{Z} / 4 n \mathbb{Z})^{*} \rightarrow\{1,-1\}$ (where $(\mathbb{Z} / 4 n \mathbb{Z})^{*}$ is the group of invertible elements in $\mathbb{Z} / 4 n \mathbb{Z}$), such that, for every odd prime p, with $(n, p)=1$, one has

$$
(n / p)=\chi([p]) .
$$

(Here $[p]$ is the class of p in $(\mathbb{Z} / 4 n \mathbb{Z})^{*}$.)
8. Let R be a finitely generated commutative ring (i.e., R adimits a surjective homomorphism $\mathbb{Z}\left[x_{1} \cdots, x_{n}\right] \rightarrow R$.) Prove that for every maximal ideal $m \subset R$ the quotient R / m is finite.

Definition: For a finitely generated commutative ring R define its zeta function to be

$$
\zeta_{R}(s)=\prod_{m \subset R} \frac{1}{1-|R / m|^{-s}}
$$

where the product is taken over all maximal ideals in R. (Note that $|R / m|$ is finite by Problem 8.) One can show that the product converges for large s.
9. Let R be a finitely generated commutative algebra over \mathbb{F}_{p}. For an integer $k>0$, let N_{k} be the number algebra homomorphisms

$$
R \rightarrow \mathbb{F}_{p^{k}}
$$

(Why N_{k} is finite?) Show that

$$
\zeta_{R}(s)=\exp \left(\sum_{k \geq 1} \frac{N_{k}}{k} p^{-k s}\right)
$$

10. Prove that

$$
\zeta_{\mathbb{F}_{p}[x]}(s)=\frac{1}{1-p^{1-s}} .
$$

11. Define a function $\chi: \mathbb{Z} \rightarrow\{0,1,-1\}$ as follows: $\chi(d)=1$ if d is congruent to 1 modulo $4, \chi(d)=-1$ if d is congruent to 3 modulo 4 , and $\chi(d)=0$ for every even d. Prove that the number of integral solutions to the equation $x^{2}+y^{2}=n,(n \geq 0)$, with $x>0, y \geq 0$, is equal to

$$
\sum_{d \mid n} \chi(d)
$$

where the summation runs over all positive divisors of n.

