GALOIS THEORY. HW2. (DUE OCTOBER, 27)

1. Prove that, for a positive integer N, an angle of measure $\frac{2 \pi}{N}$ is trisectible (using a compass and a straightedge) if and only if 3 does not divide N.
2. Let $n_{1}, \cdots n_{m}$ be pairwise coprime integers such that, for every $1 \leq i \leq m, \sqrt[3]{n_{i}}$ is not an integer. Prove that

$$
\left[\mathbb{Q}\left(\sqrt[3]{n_{1}}+\cdots+\sqrt[3]{n_{m}}\right), \mathbb{Q}\right]=3^{m}
$$

3. Determine the Galois group of the splitting fields over \mathbb{Q} of the following polynomials
(a) $x^{4}+2$
(b) $x^{4}+x^{2}+1$
(c) $x^{6}-4$.
4. Let $F \subset K \subset L$ be algebraic extensions.
(a) Assume that $F \subset K$ and $K \subset L$ are normal. Is it true that $F \subset L$ is normal?
(b) Assume that $F \subset K$ and $K \subset L$ are separable. Is it true that $F \subset L$ is separable?
5. Let α and β be distinct roots of a polynomial $f(x) \in K[x]$ of degree $d>1$. Prove that

$$
[K(\alpha+\beta): K] \leq \frac{d(d-1)}{2}
$$

6. Is there a normal extension $\mathbb{Q} \subset F$ with $F \subset \mathbb{R}$ and $[F: \mathbb{Q}]=3$?
