JINCTOK 5.

3adaua 1. B kopobke 7 KpacHbIX u 5 6erbix mapos. CaygaitHeiv 00pa3oM n3 KOPOOKY BEIHUMAOT /TBa,
mapa. Haifianre MaTemarndeckoe 0KuJaHNE W TACTIEPCAIO KOJTMIECTBA KPACHBIX MapoB. V3MennTcs m
OTBET, €CJIN BBIHUMATH APl CIAEYIONIM 00Pa30M: BBITAINNUIN MEPBHIA Map W MOJOKUIN 00paTHO,
a 3aTeM BBITAIWIN BTOPOIi map?

3adaua 2. MoreTy, st KOTOPO BEPOSITHOCTD BBITIAJEHNS «OpJiay paBHa p, bpocator N pas. Haitanre
MaTeMaTHIeCKOe OXKWTAHIE U TUCTIEPCUI0 KOJUIECTBA «OPJIOBY.

3adaya 3. Bpocaor narh urpajbabix Kocreil. Haiijinre MareMaTndeckoe OXKujiaHue U JUCIEPCUTO
CYMMBI BBITIABIINX OYKOB.

3adaua 4. CTo muceM pas3yIOKWUIM 10 CTa KOHBEPTaM, Ha, KOTOPBIX yIKe OBLIM HAMUCAHBI aJpeca,
caydaitabiM obpaszom. Haiimnre MmaTemaTnaeckoe 0KUJaHNE KOJMIECTBA TIHCEM, JIEXKAINX B KOHBEPTaX
C NPABUJIBHLIME &JIPECAMMU.

3adava 5. Mounety, i KOTOPOW BEPOSTHOCTH BBITIAJIEHUS «OpJay paBHA p, OPOCAIOT JI0 TEPBOTO
BRITTQJIEHNS «OpJiay. Haiigmre MaTemaTndeckoe OXUWIaHWE W JWCIEPCHI0 Jwcaa Opocanwii B CIyvae
(a) wamcmo 6pocanmit He Gonee N, mpuaem N-e GpocaHre CIMTAETCA YCHEITHBIM MPH JIIOOOM HCXOJE,
(b) wmcmo Gpocanmit HEOTPAHMIEHO.

3adaya 6. Cnyuaitnas Benmaumaa £ uMmeer pacmpesenenue [lyaccona ¢ mapaMmerpoM A, T. e. g
BCEX TIEJIBIX HEOTPUIATENbHBIX k BepHO paBeHcTBo P(¢ = k) = Nee=A /k!. Haiingure Maremarmaeckoe
OXKMJIaHWe 1 JUCTePCHio &.

3adaua 7. Haiimre MareMaTndeckoe OXKUIAHWE W AUCIEPCHI0 CAYyIaifHBIX BEIUIWH, PACIPE/IeTeH-
HBIX CJIEJLYOIIUM 00Pa3oM:

(i) paBHomepHO Ha oTpeske [—1,1];

(ii) mokazaTenbHO ¢ MapamMeTpoM A (T.e. IIOTHOCTH pacmpejesenus uveer Bug e ly~o(t));

(iii) cormacro mopmamsHOMY 3aKomy N (m, o?).

3adaua 8. Haitnre MaTeMaTnaeckoe 0XKUIAHNE W TUCTIEPCUIO CIyIAiHON BETMYWHBI, pacpe/IeIeHne
KOTOPOH 3aJJaHO IJIOTHOCTBIO:

(2) () =1— o] upu || < Lu o(x) =0 upu [z > 1, (b) o(z) =ge 1, (¢) ofz) =sina upu
x €[0,7/2] u o(x) =0 npmu x ¢ [0, 7/2].

3adaua 9. CymiecTBYIOT JIM HE3aBUCHMBIE HEMTOCTOSIHHBIE CyJaiiHble BeUInHBl X U Y Takwme, UTO
X24+Y?=1.

3adawa 10. Onmmure Bee caydaiiable BenanHbl { Takne, 9T0 € n sin € He3aBUCHMBI.

Badaua 11. Tycts (z,y) mmeer pasromeproe pactpenenenue 5 (a) [0,1)%, (b) {(z,y): 2*+y* < 1}.
SBnstorcs i BEIMYKUHDBL T W Y HE3ABUCUMbIMU?

3adava 12. Cnyuaitnag Besmunua £ MUMeeT MyacCOHOBCKOE PACIIPEJIESIEHNE C MapaMeTpoM Aj, CJIy-
JaiiHast BeJTMIWHA 1) PACTIPeeeHa SKCITOHEHITHAIBHO C TTApaMeTPOM Ao, TIpudeM & W 1) HE3aBUCHMBI.
Haiinmure maTemMmaTnaeckoe 0XKUJIaHUe U JUCIIEPCHIO CaydaiiHbix Beamann & + 1, £n, max{&, n}.



Remarks on the problem set 5

Ex 1. Let N be the7nu5mber of red balls drawn fror7n the box in two extractions.

We have P(N =1) = (1(2253) =:py, and P(N =2) = % =: po. This entails

M[N] =p; * 1+ 2% p2 =17/6, D[N] = p1 * 12 + py % 22 — M[N]? = 175/396.

Notice that N = Ni + Ny where N; takes the value 1 if the i-th ball was red, and
0 otherwise. Since P(V; = 1) = 7/12 =1 — P(N; = 0), from the linearity of the
expectation it follows M[N] = E[N;] + E[Ny] = 2% 7/12.

Now, if we sample with replacement (second question of the exercise), we still
have M[N] = 7/6 for the aforementioned reason. However, since now N and Na
are independent, we gater D[N] = D[N;] + D[N3] = 2 % (7/12)(1 — 7/12) = 35/72.

Notice that in this second case the variance is higher, and this is quite intuitive.
As a limiting case, you can think about sampling 12 balls. If there is no replacement,
we will get exactly 7 red balls, thus the variance is 0. If we sample with replacement,
then the variance grows with the number of extractions, as we get in this case
12 % (7/12(x1 — 7/12).

Ex 2. We can reason as above, in particular in the case of extraction with
replacement. Let X =number of tails (or tails). Then X = Zf\il X; where X; is
1 or 0 depending wether we had a tail at the i-th extraction or not (in particular
M[X;] = p, D[X;] = p(1 — p)). Then M[X] = Zivzl M[X;] = N p. Since the X;’s

are independent, V[X] = Y B[N;] = N p (1 — p).

Ex 3. Let n = 6 be the number of the faces of one die, k = 5 the number of
tossed dice. If N is the result of one die (say, the first), then we have

M[N] =) fi="ft=7/2
DIN] =" Li? - MIN]? = 2551 = 35/12
i=1

Since the result of each die is independent from the others, reasoning as in the Ex
2, we have that the expectation of the sum of the dice is K M[N] = 35/2 and the
variance is kD[N] = 165/12.

Ex 4. If we select a permutation over n elements (here n = 100) randomly (more
precisely, giving to each permutation the same probability 1/n!), the probability
that a given number ¢ € {1,...,n} is fixed by the permutation is 1/n. Again,
by linearity of the expectation, the expected number of fixed points is n% =1,
regardless of n.

Notice that calculating the variance is also possible in this case (yet not required
in the text). As above, let X; take the value 1 (if 7 is a fixed point) or 0 (othervise).
We have M[X?] = M[X;] = 1/n. On the other hand, for i # j, M[X; X;] = m
(since it coincides with the probability that ¢ and j are both fixed). Therefore the



variance of the number of fixed points X =, X; is calculated as

D[X] =Y M[X7]+ > MIX; X;] — M[X]?
i=1 i#£j
n%—l—n(n—l)ﬁ—l:l
We calculated previously (Listok 1, Ex 6) the probability that a permutation

over N elements has no fixed point: >, _~ (_k—l,)k It follows that the probability

that a permutation over n elements has exactly ¢ fixed points is

n—~¢
n _1\k _1\k
(6) (n—01y 5 =4y 5
k=1

choose ¢ fixed points

3 |-=

Pbe =

perm. with no fixed points on (n — £) el.

We have thus gathered for n > 2
M1} = sz =1
)
MX]=> pel=1
¢

MX?) = pl® =2
)4

Can you compute M[X*] for n > k? [Hint: expand the power as we did for the
square; Result: The Bell number Bj]

Ex 5. If X is the number of tosses, then we have for (a)

1-p)tp if1l<n<N-1

pn5:PN(X:”):{(1_p)N1 ifn=N

Thus we have

o _1—p—p(-pNEN-1)—(1-p)?*"

N N
_ _ N
My[X] = np, = 2Dy [X] = > n?p, — MIX] o
n=1 n=1

The case (b) is similar, just we get series at the place of finite sums. In this case
M[X] = 1/p and D[X] = (1 - p)p~>.

Ex 6. We have

MIX] = e > kA /R = e A) M/ = A
k=0 k=0

DX] =e Y K2AF/kl = M[X]? = X* + A= A% =)
k=0

Ex 7. We have
(i) M[X] = 0 by symmetry. D[X] = [1, 22/2dx = 2/3.
(i) M[X] = [ Me™Mdt = A~ and D[X] = 2A~2 - M[X]? = A2,



(iii) First let’s recall that [, exp(—z*/2)dz = /2 (this can be proven by com-
puting the square of such an integral in polar coordinates, or by the means
of the residual theorem). Moreover we have (set y = 22/2 and integrate by
parts)

/ 2% exp(—22/2)dx = V2r
R

Therefore the change of variables z = (x — m) /o easily shows that

MIX) = s [ (- S5 = m

D[X] = —-L — m)2 exp(— & dg = o
[ ]*W R(‘T m) exp( 252 )I—J

Remark on Ex 9 and Ex 10 Let U be a random variable and V' = f(U) for
some measurable function f. Then U are V are independent iff V' is a.s. constant.
Indeed, if V' is constant U and V are trivially independent. Conversely, if U and V'
are independent, then for every measurable set A

0=P(VeAVecA=PUcfA),VcA
=PU € fHA)P(V € A) =P(V € A)P(V € A)
Thus for every A the probability of the event {V € A} is either 0 or 1, which easily
implies that V is costant a.s..
Notice that the same statement does not hold in the following situation. U is a
random variable, and we know that V' = ¢g(U) and W = f(U) are independent. In

this case we cannot deduce that either V or W are a.s. constant. For instance take
U uniform in [-1,1], V =sign(U) and W = |V|.

Ex 9 If X and Y are independent, then X? and Y? are also independent. And
if X2 4+ Y2 = 1, then from the previous remark both X? and Y? are constant
a.s., say X2 = cos?(f) and Y? = sin?(#) for some angle f. Thus it must happen
X =Ucos(f) and Y = Vsin(#) where U,V are independent random variables with
(a.s.) values in {—1,+1}.

Ex 10 From the previous remark, it follows that £ a.s. takes value on the inverse
image of sin of some given value u € [—1, 1].

Ex 11 (a) Yes, since the uniform measure on [0, 1]? is a product measure (it’s
enough to check it on intervals). (b) No for instance

P(X >27Y2) =P(Y >27Y2) >0
P(X >2712y > 2712 =0



