JINCTOK 2.
3adaua 1. B cembe aBa pebeHka, MpuvueM OIWH W3 HUX MajbunK. KakoBa BepOSATHOCTH TOTO, UTO B
CeMbe JIBa, MaJIbInKa, !
3adaya 2. B xopobke a 6enbix u b depHbIX MAapukoB. CIydaitHbiM 00pa30M U3BIEKAETC Tap. JTOT
map BO3BpaIaeTcs o0paTHO, 3aTeM T00aBJIETCS €eIlle ¢ IIapOB OJHOrO C HUM IIBETA.

(a) Haifigure BEpOATHOCTH TOTO, YTO MPU 7 + 1M W3BJCUEHUSAX MOABUIOCH N GEIBIX W 1M IEPHBIX
11aPOB.

(b) Mokaxure, 9TO BEPOATHOCTH M3BJIeUYeHNs 0€10T0 mapa Ha k-m mare pasna a/(a + b).

3adava 8. N3 muoxectsa {1,2,...,100} 6e3 Bo3BpaIleHns MO 0Yepe BHIOUPAIOT TPH PA3TUIHBIX
qucsa. Haiiiure ycioBHYI0 BEpOATHOCTH TOrO, YTO TPEThE UHUCJIO JIEKUT MEXK/Y MEPBBIM U BTOPBIM,
TTPU YCJIOBUHU, 9TO TIEPBOE UNCJIO MEHBITIE BTOPOTO.

3adava 4. Cnyuaitabiv obpazom Beibupaem u3 {1,2,...,n} oguo uyucao. Cobbirne A — BeIOpaHHOE
quCa0 genuTed Ha 2, cobbrtme B — BeiGpannoe umcsio genmres Ha 5. (a) BoisacuuTh, HezaBucumbl n
cobeituss A u B nipu n = 99,100, 101. (b) Haiinure Bce n Takue, uro cobbitusg A u B He3aBUCHMBI.

3adawa 5. HoBUaoK Wrpaer Tpu mapTUM B TEHHWC TPOTHB IBYX MPOTUBHUKOB — CJIAO0TO M CHIBHOTO.
On mosmken mobeuTh B ABYX MapTusxX moapsia. 1lopsmok mapTuit MOXKeT OBITh CIeIYIOMHi: CIa0bIi
— CWJIBHBIN — CJ1abblil WM CUJIBHBIN — CJIa0bIH — CHyibHBIA. BeposaTHOCTE 0benTh CJ1aboro p, BeposiT-
HOCTb TOOEINTH CUABHOTO ¢, ¢ < p. Pe3yabraTsl napTuii He3aBuCUMbBI B COBOKyTHOCTH. Kakoit BapraHT
MIPeTIOUTHTENbHE JI/IsT HOBUYUKA W KAKOBA BEPOSTHOCTH BBHIUI'PATH !

3adava 6. (a) Ilycrs cobbirna A w B nesasucumbr. Jlokazxure, aTo cobbitust A n Q\ B He3aBucumol.

(b) Cobbitus A, B, C nonapHo HezaBucuMbl 1 paBHoBeposTHb, ANBNC = (. Haiitu MakcumMasbHO
BO3MOKHOE 3HavueHue P(A).

3adana 7. IIpocTpaHCTBO 9/IEMEHTAPHBIX UCXO0B {) COCTOUT U3 7 HJIEMEHTOB. BBIACHUTH, TpH KaKuX
k ma ) MOXKHO OMpeIe/INTh BEPOSTHOCTHYIO Mepy P u BeimeanTh cobbitust A1, Ag, ..., Ay Tak, aro stn
cobbITHst He3aBucuMbl B coBokynaocTr n 0 < P(A;) <1 mna seex ¢ = 1,2,... k.

3adava 8. Iycrs g > 1/2. IIpo tpu cobbirua A, B, C uzsecrno, uro P(ANB) > qu P(ANC) > q.
Hokazxkure, uro P(A|BNC) > gq.

3adaua 9.* (Jlemma Jlosaca) Ilycts cobbirua Aq, ..., A, waucno d € {1,2,...,n} yaoBreTBOpaoT
CJIEIYIOIMM JIBYM yCJIOBUSAM: 1) jyis Kaxkgoro cobwitma Ay maiigyrces coberrusa A, ..., A;, ¢ s >
n — d Takme, 9T0 Aj HE3aBUCHMO CO BCEMW MEPECEUCHUSIMU STUX COOBITHIH, 2) I KayKaoro k BepHO
uepaserctBo P(Ag) > 1— e(T{H)' Hokazxwure, aro P(NiAg) > 0.

3adaua 10. B HayaHOM 1IeHTpE pabOTAIOT CIIEIIAIHNCTRI TI0 PA3IMTIHBIM HATPABIECHUSIM €CTECTBEHHBIX
HayK (YMCI0 HAMpaBICHWH MBI He 3HaeM). 110 KaXKI0My HAIPABIEHUIO B MEHTPE paboTaeT POBHO 7
YUEHbIX, IPUYEM BIIOJIHE MOZKET ObITh, YTO0 OJMH YUYECHbIH SIB/IA€TCs CHELUAJIUCTOM CPa3y 110 HECKOJIbKUM
HAIpaBJCHUIM, HO He Oojbime Tpex. JloKa)KuTe, ITO BCErIa MOYKHO TaK PACIPEIEIUTH BCEX yIEHBIX
IEHTPA TI0 JBYM OJHOBPEMEHHO TTPOXOISIIINM KOHMEPEHIINIM, 9TO Ha KayKJI0H OyIyT MPUCYyTCTBOBATH
CIIENUAUCTRI 110 BCEM HANPaBJIeHUsIM (M KaxKplil OyJeT y9acTBOBATE JIMIh B OJHON KOH(MEpeHnY).

3adaua 11.* o kpyry croar 1600 cryzentos u3 100 rpymm o 16 genoBek. Jlokaxkure, 9T0 B KaXK A0
TPyIIie MOXKHO BBIODATH CTAPOCTY TaK, 9TO PAOM HE OKAXKETCS JBYX CTAPOCT.

3adava 12.* Jdokaxkure, aTo mjist Beakux 25 uucen Ap, As, ..., Aos MOXKHO paCKpacUTh BCE Bellle-
CTBEHHBIE UNCIA B TPU I[BETA TAK, UTO JJIA KaXkKJI0TO & cpemn wucen x, © + Aj, ..., x + A, BcTpersitcs
BCE TPU IiBeTa.



Remarks on the problem set 2

Ex 1. There are four options {MM, MF, FM, FF}, a priori equiprobable.
As we know that one is male, we are left with three, still equiprobable possibilities
{MM, MF, FM}, which implies that the answer is 1/3. Notice that, had we known
that say the eldest (or the tallest, etc) sibling is a male, then the probability that
the family has to males is 1/2. No tricky math here, just tricky language.

Ex 2. (a) This is an interesting exercise that can be generalized in several ways
(e.g. several colors). First suppose that we want to find the probability of a given

sequence of colors, say BBWB (B for black, W for white): this is easily calculated
as b btc a b+2¢

a+b atbtc atb+2¢c atb+3c”
If we similarly calculate the probability of a sequence of length n + m, it is then

clear that, no matter the colors in the sequence, we have at the denominator a
product (a +b)(a+b+c¢)---(a+b+ (n+m —1)c). Similarly, the numerator will
only depend on how many white balls (say n) and black balls (say m) are extracted
(and does not depend on the actual order of appearance of such colors), and is
given bya(a+c¢)---(a+(n—1)c)b--- (b+ (m — 1)c). If one introduces the notation

v—1

w®?) = H(w +iu)

i=0
then the probability of a given sequence with m white and n black is a(®™b(¢™) /(a+
b)(entm) | Since there are ("1™) such (ordered) sequences, the wanted probability
is
n+m\ alemplen)
n (a + b)(CJH»m)

(b) From the discussion above, it is clear that the probability is invariant under
permutations of the order of sampled colors, so the probability to get a white at
the first try should equal the probability to get a white at a later extraction. As an
exercise, let’s make this statement formal. Let k be the total number of extractions,
and consider the probability space S := {B, W}*. For x € S and 7 a k-permutation,
let 2™ be defined by 2] = ;. From the calculations in point (a), we know that
P({z"}) = P({z}). Therefore, setting E}, the event “a white ball is extracted at the
k-th extraction”, and fixing any permutation 7 with (k) = 1, we have

P(Ey) =P{{zeS:azy=W})=P{a" €S : 2] =W}
=P{zesS: 2] =W})=P(E) =4

Further remarks on Ex. 2 Notice that for ¢ = —1, the formulas in (a) gives the
probability of the same event in the sampling without replacement. For ¢ = 0 it
gives the probability in the sampling with replacement (independent extractions).

A remarkable case is obtained when a = b = ¢ > 0. In such a case, the probability
of extracting k white balls in N extractions is 1/(N + 1), namely it is independent
of ke {0,1,...,N}.

Ex 5. Let A; be the event “the player wins the i-th game”. Then P((A; N As) U
(A2NA3)) = P(A1 N Az) +P(A; N As) —P(A1 N A2 N A3) = pg+ qp — pgp (exchange
the role of p and ¢ in the case of strong-weak-strong).



Ex 6. For point (b), let p =P(A4) = P(B) = P(C). Then
(1-p)?=P(BNC)>P(ANBNC)=1-P(AUBUC) =1 - (3p—3p>+0)

As a consequence, p < 1/2. Tt is easy to check that p = 1/2 is possible. E.g.
0 ={1,2,3,4} with uniform probability, and A = {1,2}, B = {1,3}, C = {2,3}.

Ex 7. k has to be such that 2¥ < n.

First we prove that this inequality is necessary for such a probability space
to exist. Recall that, as each B; runs in {Ai,fli}, the sets Bi,..., By are also
independent. Thus P(By N -+ ,NBy) = P(By)---P(Bg) € (0,1). Therefore the 2*
sets of the partition of Q given by { ﬂle B;, B; € {A;, fli}} are all distinct and
nonempty. This yields 2¥ < n.

Next, we prove that the inequality is sufficient. Indeed, up to adding up some
points with vanishing probability to €2, we can assume n = 2¥. Then take Q =
{0,1}%, and A; = {w € Q : w; = 0} and P uniform.

Ex 8. There are various ways to prove this statement. For instance
2P(ANBNC)>PANB)+P(ANC)—P(BAC)
P(BNC)>1-P(BAC)

so that (for p = P(BAC)) P(A|BNC) > ;‘i—gz > q, for ¢ > 1/2.

Ex 9. We will prove the following fact:
For each A € {A4,..., A,} and each subset £ C {A41,..., A,} \ A, it holds

P(A|Npes B) < 71 (1)
Once (1) is proved, the wanted statement follows from

P(Mi=1Ar) = P(A1] Moy AR)P(A2| Mg A) -+ P(An) > (1= g7)"

As for the proof of (1), we proceed by induction on the cardinality of £. The base
is trivial, since if £ is empty then P(A) < m < ﬁ. Let’s then fix a nonempty
£, and assume that (1) holds for any A € {A4,..., A,}, whenever & is replaced
with a subset of {4;,..., 4,} \ A with cardinality strictly smaller than & itself.
Let F C {A1,..., Ay} \ A be the collection of sets on which A is not independent;

by hypothesis |F| < d. Let & = ENF, & = £\ £1. By some elementary algebra
P(/_l ﬁB€:5'1 B‘ mBEc‘)z B)

P(A| Npes B) = 2
(A Npee 5) P(Npeg, B| Npee, B) ®

Now the numerator is bounded as
P(ANpee, Bl Npeg, B) < P(A|Npeg, B) =P(A) < 1/(e(d + 1)) (3)

where we used that A is independent of the B’s in &;.
As for the denominator in (2), write & = {Bi,..., By} and
P(Npee, Bl Npee, B) = P(B1|Ni_, B Npee, B)P(Ba2| Ni_3 Bj Npee, B) -+ P(By| Npee, B)
>(1-gp) >0 - g9)i>1

(4)
From (2), (3) and (4) we obtain (1).



Further remarks on Ex. 9 There is a sharper version of this statement: if we let
p := sup, P(A) and assume

1 itd=0
p<i1/2 ifd=1
DT p g >0

then P(N}_, Ag) > 0.

Ex 10. We assign each scientist to one of the two conferences randomly, with
equal probability and independently one of the other. Say that there are n subjects
of expertise, and for ¢ = 1,...,n let A; be the event “there is an expert in the
i-th subject in both conferences”. We want to prove that P(N?_;A4;) > 0. We have
P(A;) = 2% 277 =276 On the other hand, A; only depend on the assignment of
the 7 scientists that are expert in 4, and those scientists are (all together) at most
expert in other 27 = 14 subjects. We can then apply the statement in Ex. 9 with
d =14 since e275(14 +1) < 1.

Using the sharper statement at the end of Ex. 9, it is actually enough to know
that for each subject there are (at least) 6 experts.

Ex. 11 We chose randomly the head of each team, giving the same probability
1/16 to each member of each team. We then let A; be the event “the students at
positions i,1 + 1 are not both heads of their groups”. We want to apply Ex. 9 to
show that P(N1%9°A4;) > 0. If the students at 4,i + 1 are in the same team, then
P(A;) = 0; otherwise P(4;) = 1/162. In any case P(4;) < 278. On the other hand,
A; is determined only by the choice of the heads in the teams of the students at
positions 4,4+ 1, and is independent on the choice of heads of the remaining 98 (or
99) teams. Since those teams are relevant for at most other (2% (16—1)+1)*2 = 62
adjacent positions 7, j + 1, we can take d = 62 in Ex. 9. And since ex278 %63 < 1
we can apply the result in that exercise.

Notice that the same calculation holds if we had N teams with k& > 11 students
in each.



