JINCTOK 4.

3adava 1. HekTo MpUXoauT HA CTAHIIMIO METPO B CIyYailHBII MOMEHT BPEMEHW W CAUTCS B MEPBHIi
npureamuit moe3a. OKa3bpIBaeTCsI, 9TO B OJHY CTOPOHY OH €JIeT Topas3zio dJarre, deM B apyryio. Kax
TaKOe MOYXKET OBIThH?

3adawa 2. X u Y IOTOBOPUINCH BCTPETUTHCS B mMpoMexkyTok Bpemenu ¢ 12.00 mo 13.00, mpuuem
KaXKIbIl W3 HUX TOTOB XkKaaTh poHO 30 muayT. Kakosa BeposiTHOCTE BeTpeun? KakoBa BEpOSTHOCTH
TOTO, 9TO OHU BCTpeTwanch n X He ka1 Y! KakoBa BEPOSATHOCTD, YTO OHU TPUIILIH OJTHOBPEMEHHO?

3adava 3. Tpoe 3araapiBaior 1o qucty u3 orpeska [0, 1]. Kakosa BeposTHOCTB TOrO, 4TO CyIIECTBYET
TPEYroJbHUK C TAKUMU CTOPOHAMU !

3adaya 4. (Nrna Biodbdona) Iycts na nonocy 6eCKOHEIHON JTMHBI U €IMHITIHON IMTUPUHBI HA, TLIOC-
KOCTH CiIy4aifHbIM obpa3om Opocaercst uriia eInHu9HON JnHbl. KakoBa BEPOSITHOCTH TOrO, YTO HIJIA
mepeceveT XOTs Obl OJ[HY U3 JIUHU{T, 00PasyoIuX ToI0Cy !

3adaua 5. Touka (x,y) BeIOUpaerca u3 keazgpara [0, 1] x [0, 1] cormacHo paBHOMEpPHOMY pacrpeje-
nenwto. Haiiaure pacipenenenns caygaiineix semmann:  (a) |z —y| (b) max{z,y}, (¢) min{z,y},
(d) xy, (e) x/y.

3adava 6. Touka (x,y) BeOupaerca u3 kBaapara [0, 1] x [0,1] cormacno paBHOMEPHOMY pacupeie-
sgennto. Haiiinre pacnpeenerus cIydaiiHoil BeTUIUHBL xITy

3adawa 7. Ha mmockocTn HapuCOBaH eWHWIHBIN KBagpar. CiydaiitHbIM 00pa30oM MPOBOAUTCS TIPSi-
Mas ¥ BBIYUCJIFETCH JyinHa € TPOeKIny KBajpara Ha npsiMyio. Haitgure yHKIUIO pacipejeienus
CIy4aitHO# BeJUYINHBI £ U HAPUCYiiTe ee rpaduk.

Badaua 8. M. BeIOHpaer T0UKy (x,y) m3 exmmmunoro kpyra B = {(z,y): 22 + y? < 1} cormacmo
pasHOMepHOMY pacnpegenernto na B. N. Beibupaer Touxy (x,y) caemyomuM o6pa3oM: OH BLIONPAET
(¢, r) n3 npavoyroapauka II = [0, 27) x [0, 1] cormacuo pasHOMEpHOMY pactpesenenuto ua 11, a 3arem
TMOJIATAeT & = 1 cos U Yy = rsiny. OTAugaTced Iu pacuepeesienns BelOpanubix Touek v M. u N.7
Kak cnemyer M. usmenuts npasusia Bbibopa (, ), 9ToOBI pacupeieie s COBIaIu’

3adaya 9.* Mycrs Bextop (£,7) pasHoMepno pacnpexpenen va K = [0,1] x [0,1]. TokaxnTe, aTo
BekTop (X,Y), rae

X =+v/—2Inécos(2mn), Y =+/—2In¢sin(27n),
MMeeT HOpMaJIbHOE CTAHIAPTHOE PACIIpeeIeH e,

3adava 10. Touxa (z,y,z) BHIOMpaETCs COrMIACHO PABHOMEPHOMY DPACIPENEJEHUI0 Ha €IMHUIHON

cepe x2 + y? + 2? = 1. Haiiaure pacipe/ieenue IpOeKIuy ST0i TOUKH HA IJIOCKOCTD &, .



Remarks on the problem set 4

Ex 2. It is easily seen that the area of the shaded area in the picture is 3/4: it
corresponds to the probability that X and Y meet.

Ex 3. Three numbers are the side lengths of a triangle iff the largest one does
not exceed the sum of the other two. In other words, we have to calculate the
volume of the region {max{w,y,z} < (z + y + 2)/2} within [0,1]3. Since we are
removing three tetahedrons, each of volume 1/6, from such a cube, the answer is

Ex 4. This is a classical problem, as it has been used to provide the first Monte
Carlo simulation in history. Here we discuss a slight variation of this problem:
suppose that the ‘needle” is replaced by any Lipschitz curve of length /. What
is the expected number of intersections with a grid of horizontal lines, spaced at
distance 1 from each other?

The answer is surprisingly simple. First, if the needle is just a segment of length
£, the expected value must be proportional to ¢, E[N] = ¢/ for some ¢ > 0 (it is an
increasing function of ¢ and satsfies f(¢1 + ¢2) = f(¢1) + f(¢2)). Next if the needle
is a polygonal curve of total length ¢, then again by linearity of the expected value
E[N] = ¢f since the total number of intersections is the sum of the intersections
of each segment in the needle. Finally, by monotone approximation this holds for
any sufficiently regular curve. Thus the whole problem is reduced to calculate the
constant ¢. However, if the needle is a circle of radius 1/2, then N = 2 a.s., and
therefore in this case 2 = E[N] = ¢ (27). So that ¢ = 1/(27), and the expected value
of the number of intersections for any Lipschitz curve is E[N] = -£. Notice that if
the needle is a segment of length ¢ < 1, then this also coincides with the probability
of having at least one intersections (since two or more intersections cannot occur
in this case).

Ex 9. The exercises 6—10 share the following point. Let X be a random
variable with values in a measurable space E, and let P be the law of X (thus P is a
probability measure on F). If a map f: E — F is measurable, then the law of the
random variable f(X) is Po f~!. In particular, let’s consider the case E = R"™ and
F = R™ (the same statements hold on manifolds), let’s assume that P admits a
density ¢ w.r.t. the Lebesgue measure, that the map f is smooth a.e. and (locally)
injective. Then also the law of the random variable Y = f(X) admits a density ¢



on R™, and the usual change of variables formula holds
po f~y)
YY) = T (1)
W= o 71
where | f’| stands for the absolute value of the Jacobian determinant of f.
Back to Ex. 9, we may apply directly the computation (1). To avoid cumbersome

computations, let’s split the work in two parts. First, define the random variable
A =+/—2log&. Notice that for a > 0

PA<a)=PE¢>e /) =1-e"/2

In particular the law of A admits a density x(a) = a e‘“z/ZlaZO. Since £ and n are
independent, also A and 7 are. Therefore (A4,7n) admits the density

w(a,s) = ae_“2/21a2010§5§.
Now let’s apply (1) to the transformation
f(a,s) = (a cos(2ms), a sin(27ws))
which is just the usual polar coordinates transformation. An immediate application
of (1) then gives for (X,Y") the density
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V(w,y) = o exp(— 5.



