GALOIS THEORY. HW3. (DUE NOVEMBER, 16)

1. Let p be an odd prime number, ϵ a primitive p-th root of 1 in \mathbb{C}.
(a) Prove that $\mathbb{Q}(\epsilon)$ contains a unique subfield $K \subset \mathbb{Q}(\epsilon)$ with $[K: \mathbb{Q}]=2$.
(b) Show that $\sqrt{(-1)^{\frac{p-1}{2}} p} \in \mathbb{Q}(\epsilon)$.
2. Determine the Galois group of the splitting fields over \mathbb{Q} of the following polynomials
(a) $x^{5}+x-1$
(b) $x^{4}-p x^{2}+q$, where p and q are distinct odd primes.
3. (a) Prove that, for every prime p and a positive integer n, one has the following identy in $\mathbb{F}_{p}[x]$:

$$
x^{p^{n}}-x=\prod_{i} f_{i}(x)
$$

where $f_{i}(x)$ are all irreducible polynomials in $\mathbb{F}_{p}[x]$ of degrees dividing n.
(b) Find the number of irreducible polynomials in $\mathbb{F}_{p}[x]$ of degree 5.
4. Let $\mathbb{F}_{p}(x, y)$ be the field of rational functions in two variables.
(a) Show that the extension $\mathbb{F}_{p}(x, y) \subset \mathbb{F}_{p}\left(x^{\frac{1}{p}}, y^{\frac{1}{p}}\right)$ is not generated by a single element.
(b) Prove that there infitely many fields K with $\mathbb{F}_{p}(x, y) \subset K \subset \mathbb{F}_{p}\left(x^{\frac{1}{p}}, y^{\frac{1}{p}}\right)$.

